Skip to main content Accessibility help
×
×
Home

Multiple factor analysis for time-varying two-mode networks

  • GIANCARLO RAGOZINI (a1), DOMENICO DE STEFANO (a2) and MARIA ROSARIA D'ESPOSITO (a3)

Abstract

Most social networks present complex structures. They can be both multi-modal and multi-relational. In addition, each relationship can be observed across time occasions. Relational data observed in such conditions can be organized into multidimensional arrays and statistical methods from the theory of multiway data analysis may be exploited to reveal the underlying data structure. In this paper, we adopt an exploratory data analysis point of view, and we present a procedure based on multiple factor analysis and multiple correspondence analysis to deal with time-varying two-mode networks. This procedure allows us to create static displays in order to explore network evolutions and to visually analyze the degree of similarity of actor/event network profiles over time while preserving the different statuses of the two modes.

Copyright

References

Hide All
Abascal, E., García Lautre, I., & Landaluce, M. I. (2006). Multiple factor analysis of mixed tables of metric and categorical data. In Greenacre, M., & Blasius, J. (Eds.), Multiple Correspondence Analysis and Related Methods (pp. 351367). Boca Raton, FL: Chapman & Hall/CRC Taylor & Francis Group.
Abdi, H., Williams, L. J., Valentin, D. & Bennani-Dosse, M. (2012). STATIS and DISTATIS: Optimum multi-table proncipal component analysis and three-way metric multidimensional scaling. WIREs Computational Statistics, 4 (2), 124167.
Abdi, H., Williams, L. J., & Valentin, D. (2013). Multiple factor analysis: Principal component analysis for multitable and multiblock data sets. WIREs Computational Statistics, 5 (2), 149179.
Batagelj, V., & Mrvar, A. (1998). Pajek – program for large network analysis. Connections, 21, 4757.
Baur, M., Benkert, M., Brandes, U., Cornelsen, S., Gaertler, M., Köpf, B., Lerner, J., & Wagner, D. (2002). Visone software for visual social network analysis. In Mutzel, P., Junger, M., & Leipert, S. (Eds.), Graph Drawing Software, Lecture Notes in Computer Science, volume 2265 (pp. 463464). Berlin Heidelberg: Springer.
Bender-deMoll, S., & McFarland, D. (2006). The art and science of dynamic network visualization. Journal of Social Structure, 7 (2).
Borgatti, S. P., & Halgin, D. (2011). Analyzing affiliation networks. In Carrington, P., & Scott, J. (Eds.), The Sage Handbook of Social Network Analysis (pp. 417433). London: Sage Publications.
Brandes, U., Fleischer, D., & Puppe, T. (2007). Dynamic spectral layout with an application to small words. Journal of Graph and Applications, 11, 325343.
Conaldi, G., Lomi, A., & Tonellato, M. (2012). Dynamic models of affiliation and the network structure of problem solving in an open source software project. Organizational Research Methods, 15, 385412.
Coppi, R. (1994). An introduction to multiway data and their analysis. Computational Statistics & Data Analysis, 18, 313.
Correa, C. D., & Ma, K.-L. (2011). Visualizing social networks. In Aggarwal, C. C. (Ed.), Social Network Data Analytics (pp. 307336). New York: Springer.
Davis, D., Lichtenwalter, R., & Chawla, N. V. (2011). Multi-relational link prediction in heterogeneous information networks. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Kaohsiung, Taiwan, 281–288.
D'Esposito, M. R., De Stefano, D., & Ragozini, G. (2014a). On the use of multiple correspondence analysis to visually explore affiliation networks, Social Networks, 38, 2840.
D'Esposito, M. R., De Stefano, D., & Ragozini, G. (2014b). Multiple factor analysis to visually explore collaboration structures: The case of technological districts. Proceedings of the XLVII Scientific Meeting of Italian Statistical Society, Cleup, Padova, 1–6.
D'Esposito, M. R., De Stefano, D., & Ragozini, G. (2014c). A comparison of χ2 metrics for the assessment of relational similarities in affiliation networks. In Vicari, D., Okada, A., Ragozini, G., & Weihs, C. (Eds.), Analysis and Modeling of Complex Data in Behavioral and Social Sciences, Studies in Classification, Data Analysis, and Knowledge Organization (pp. 113122). Cham, Switzerland: Springer International Publishing.
Escofier, B., & Pagés, J. (1988). Analyses Factorielles Simples et Multiples: Objectifs, Méthodes, Interprétation. Paris: Dunod.
Escofier, B., & Pagés, J. (1994). Multiple factor analysis (AFMULT package). Computational Statistics and Data Analysis, 18, 121140.
Faust, K., Willert, K. E., Rowlee, D. D., & Skvoretz, J. (2002). Scaling and statistical models for affiliation networks: Patterns of participation among Soviet politicians during the Breznev era. Social Networks, 24, 231259.
Freeman, L. C. (2000). Visualizing social networks. Journal of Social Structure, 1 (1).
Gagliolo, M., Lenaerts, T., & Jacobs, D. (2014). Politics matters. Dynamics of inter-organizational networks among immigrant associations. In Contucci, P., Menezes, R., Omicini, A., & Poncela-Casasnovas, J. (Eds.), Complex Networks V, volume 549 of Studies in Computational Intelligence (pp. 4755). Cham, Switzerland: Springer International Publishing.
Gabriel, K. R. (1995). Biplot display of multivariate categorical data, with comments on multiple correspondence analysis. In Krzanowsky, W. (Ed.), Recent Advances in Descriptive Multivariate Analysis (pp. 190226). Oxford: Oxford Science Publications.
Ghani, S., Elmqvist, N., & Yi, J. S. (2012). Perception of animated node-link diagrams for dynamic graphs, Computer graphics Forum, 31, 12051214.
Gordon, R. A., & Heinrich, C. J. (2004). Modelling trajectories in social program outcomes for performance accountability. American Journal of Evaluation, 25, 161189.
Gower, J. C. (2006). Divided by a common language: Analyzing and visualizing two-way arrays. In Greenacre, M., & Blasius, J. (Eds.), Multiple Correspondence Analysis and Related Methods (pp. 77105). Boca Raton, FL: Chapman & Hall/CRC Taylor & Francis Group.
Greenacre, M. (2006). From simple to multiple correspondence analysis. In Greenacre, M., & Blasius, J. (Eds.), Multiple Correspondence Analysis and Related Methods (pp. 4176). Boca Raton, FL: Chapman & Hall/CRC Taylor & Francis Group.
Greenacre, M. (2010). Biplots in Practice. Madrid: Fundación BBVA.
Holme, P., Park, S. M., Kim, B. J., & Edling, C. R. (2007). Korean university life in a network perspective: Dynamics of a large affiliation network. Physica A, 373, 821830.
Horvat, E. A., & Zweig, K. A. (2012). One-mode projection of multiplex bipartite graphs. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 599–606. Istanbul.
Kang, H., Getoor, L., & Singh, L. (2007). Visual analysis of dynamic group membership in temporal social networks. SIGKDD, 9, 1321.
Koskinen, J., & Edling, C. R. (2012). Modeling the evolution of a bipartite network –Peer referral in interlocking directorates. Social Networks, 34, 309322.
Kroonenberg, P. M. (2008). Applied multiway data analysis. New York: Wiley.
Leydesdorff, L. & Schank, T. (2008). Dynamic animations of journal maps: Indicators of structural change and interdisciplinary developments. Journal of the American Society for Information Science and Technology, 59, 18101818.
McFarland, D. A. (1999). Organized behavior in social systems: A study of student engagement and resistance in high schools. Doctoral Dissertation, Department of Sociology, University of Chicago.
Memon, B. R., & Wiil, U. K. (2013). Visual analysis of heterogeneous networks. In European Intelligence and Security Informatics Conference, Uppsala: IEEE Computer Society Press, 129134.
Moody, J., McFarland, D., & Bender-deMoll, S. (2005). Dynamic network visualization. American Journal of Sociology, 110, 12061241.
Nenadic, O., & Greenacre, M. (2007). Correspondence analysis in R, with two- and three-dimensional graphics: The ca package. Journal of Statistical Software, 20, 113.
Opsahl, T. (2013). Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks, 35, 159167.
Perer, A., & Shneiderman, B. (2006). Balancing systematic and flexible exploration of social networks. IEEE Transaction on Visualization and Computer Graphics, 12, 693700.
Richards, W., & Seary, A. (2000). Eigen analysis of networks, Journal of Social Structure, 1.
Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: The RV-coefficient. Journal of Royal Statistical Society. Applied Statistics, 25, 257265.
Seierstad, C., & Opsahl, T. (2011). For the few not the many? The effects of affirmative action on presence, prominence, and social capital of women directors in Norway. Scandinavian Journal of Management, 27, 4454.
Snijders, T. A. B., Lomi, A., & Torló, V. J. (2013). A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice. Social Network, 35, 265276.
SPAD.TM Version 5.5 (2002). Computer Program, Decisia, Pantin, France.
Tversky, B., Bauer Morrison, J., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247262.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed