Skip to main content Accessibility help
×
×
Home

A local perspective on community structure in multilayer networks

  • LUCAS G. S. JEUB (a1) (a2), MICHAEL W. MAHONEY (a3) (a4), PETER J. MUCHA (a5) and MASON A. PORTER (a1) (a6) (a7)

Abstract

The analysis of multilayer networks is among the most active areas of network science, and there are several methods to detect dense “communities” of nodes in multilayer networks. One way to define a community is as a set of nodes that trap a diffusion-like dynamical process (usually a random walk) for a long time. In this view, communities are sets of nodes that create bottlenecks to the spreading of a dynamical process on a network. We analyze the local behavior of different random walks on multiplex networks (which are multilayer networks in which different layers correspond to different types of edges) and show that they have very different bottlenecks, which correspond to rather different notions of what it means for a set of nodes to be a good community. This has direct implications for the behavior of community-detection methods that are based on these random walks.

Copyright

References

Hide All
Andersen, R., Chung, F. R. K., & Lang, K. J. (2006). Local graph partitioning using PageRank vectors. In Proceedings of the 47th Annual Symposium on Foundations of Computer Science. New York, NY, USA: IEEE, pp. 475486.
Arenas, A., Díaz-Guilera, A., & Pérez-Vicente, C. J. (2006). Synchronization reveals topological scales in complex networks. Physical Review Letters, 96 (11), 114102.
Arenas, A., Fernández, A. & Gómez, S. (2008). Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10 (5), 053039.
Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardenes, J., Romance, M., . . . Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544 (1), 1122.
Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., & Boccaletti, S. (2013). Emergence of network features from multiplexity. Scientific Reports, 3, 1344.
Coscia, M., Giannotti, F., & Pedreschi, D. (2011). A classification for community discovery methods in complex networks. Statistical Analysis and Data Mining, 4 (5), 512546.
Cranmer, S. J., Menninga, E. J., & Mucha, P. J. (2015). Kantian fractionalization predicts the conflict propensity of the international system. Proceedings of the National Academy of Sciences of the United States of America, 112 (38), 1181211816.
Csermely, P., London, A., Wu, L.-Y., & Uzzi, B. (2013). Structure and dynamics of core–periphery networks. Journal of Complex Networks, 1 (2), 93123.
De Domenico, M., Solè-Ribalta, A., Gómez, S., & Arenas, A. (2014). Navigability of interconnected networks under random failures. Proceedings of the National Academy of Sciences of the United States of America, 111 (23), 83518356.
De Domenico, M., Lancichinetti, A., Arenas, A., & Rosvall, M. (2015). Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems. Physical Review X, 5 (1), 011027.
De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12 (10), 901906.
Delvenne, J.-C., Yaliraki, S. N., & Barahona, M. (2010). Stability of graph communities across time scales. Proceedings of the National Academy of Sciences of the United States of America, 107 (29), 1275512760.
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 (3–5), 75174.
Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 144.
Ghosh, R., Lerman, K., Teng, S.-H., & Yan, X. (2014). The interplay between dynamics and networks: Centrality, communities, and Cheeger inequality. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '14. New York, NY, USA: ACM, pp. 14061415.
Gleich, D. F. (2015). PageRank beyond the Web. SIAM Review, 57 (3), 321363.
Gleich, D. F., & Kloster, K. (2016). Seeded PageRank solution paths. European Journal of Applied Mathematics, 27 (6), 812845.
Hmimida, M., & Kanawati, R. (2015). Community detection in multiplex networks: A seed-centric approach. Networks and Heterogeneous Media, 10 (1), 7185.
Holme, P. (2015). Modern temporal network theory: A colloquium. The European Physical Journal B, 88 (9), 234.
Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519 (3), 97125.
Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11 (2), 3750.
Jerrum, M., & Sinclair, A. (1988). Conductance and the rapid mixing property for Markov chains: The approximation of the permanent resolved. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM, pp. 235244.
Jeub, L. G. S., Balachandran, P., Porter, M. A., Mucha, P. J., & Mahoney, M. W. (2015). Think locally, act locally: Detection of small, medium-sized, and large communities in large networks. Physical Review E, 91 (1), 012821.
Kanawati, R. (2014). Seed-centric approaches for community detection in complex networks. In Meiselwitz, G. (Ed.), Proceedings of the 6th International Conference on Social Computing and Social Media, SCSM 2014. Lecture Notes in Computer Science, vol. 8531. Cham, Switzerland: Springer International Publishing, pp. 197208.
Kivelá, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2 (3), 203271.
Kloumann, I., Ugander, J., & Kleinberg, J. (2016). Block models and personalized PageRank. arXiv:1607.03483.
Kuncheva, Z., & Montana, G. (2015). Community detection in multiplex networks using locally adaptive random walks. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. ASONAM '15. New York, NY, USA: ACM, pp. 13081315.
Lambiotte, R., & Rosvall, M. (2012). Ranking and clustering of nodes in networks with smart teleportation. Physical Review E, 85 (5), 056107.
Lambiotte, R., Delvenne, J.-C., & Barahona, M. (2009). Laplacian dynamics and multiscale modular structure in networks. arXiv:0812.1770v3.
Lambiotte, R., Sinatra, R., Delvenne, J.-C., Evans, T. S., Barahona, M., & Latora, V. (2011). Flow graphs: Interweaving dynamics and structure. Physical Review E, 84 (1), 017102.
Lambiotte, R., Delvenne, J.-C., & Barahona, M. (2015). Random walks, Markov processes and the multiscale modular organization of complex networks. Transactions on Network Science and Engineering, 1 (2), 7690.
Lazega, E. (2001). The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership. Oxford, UK: Oxford University Press.
Lazega, E., & Pattison, P. E. (1999). Multiplexity, generalized exchange and cooperation in organizations: A case study. Social Networks, 21 (1), 6790.
Leskovec, J., Lang, K. J., Dasgupta, A., & Mahoney, M. W. (2009). Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6 (1), 29123.
Leskovec, J., Lang, K. J., & Mahoney, M. W. (2010). Empirical comparison of algorithms for network community detection. In Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA: ACM, pp. 13081315.
Mihail, M. (1989). Conductance and convergence of Markov chains — A combinatorial treatment of expanders. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science. New York, NY, USA: IEEE, pp. 526531.
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876878.
Newman, M. E. J. (2010). Networks: An Introduction. Oxford, UK: Oxford University Press.
Peixoto, T. P. (2015). Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Physical Review E, 92 (4), 042807.
Porter, M. A., Onnela, J.-P., & Mucha, P. J. (2009). Communities in networks. Notices of the American Mathematical Society, 56 (9), 1082–1097, 11641166.
Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 (4), 11181123.
Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). Memory in network flows and its effects on spreading dynamics and community detection. Nature Communications, 5, 4630.
Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., & Montesi, D. (2015). Spreading processes in multilayer networks. IEEE Transactions on Network Science and Engineering, 2 (2), 6583.
Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological Methodology, 36 (1), 99153.
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge, UK: Cambridge University Press.
Whang, J. J., Gleich, D. F., & Dhillon, I. S. (2016). Overlapping community detection using neighborhood-inflated seed expansion. IEEE Transactions on Knowledge and Data Engineering, 28 (5), 12721284.
Yan, X., Teng, S.-H., Lerman, K., & Ghosh, R. (2016). Capturing the interplay of dynamics and networks through parameterizations of Laplacian operators. PeerJ Computer Science, 2, e57.
Yang, J., & Leskovec, J. (2015). Defining and evaluating network communities based on ground-truth. Knowledge and Information Systems, 42 (1), 181213.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed