Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T08:52:09.278Z Has data issue: false hasContentIssue false

Further insights into the interareal connectivity of a cortical network

Published online by Cambridge University Press:  13 July 2015

LUCIANO DYBALLA
Affiliation:
Programa de Engenharia de Sistemas e Computação, COPPE, Universidade Federal do Rio de Janeiro, Caixa Postal 68511, 21941-972 Rio de Janeiro - RJ, Brazil (e-mail: ldyballa@ufrj.br, valmir@cos.ufrj.br)
VALMIR C. BARBOSA
Affiliation:
Programa de Engenharia de Sistemas e Computação, COPPE, Universidade Federal do Rio de Janeiro, Caixa Postal 68511, 21941-972 Rio de Janeiro - RJ, Brazil (e-mail: ldyballa@ufrj.br, valmir@cos.ufrj.br)

Abstract

Over the past years, network science has proven invaluable as a means to better understand many of the processes taking place in the brain. Recently, interareal connectivity data of the macaque cortex was made available with great richness of detail. We explore new aspects of this dataset, such as a correlation between connection weights and cortical hierarchy. We also look at the link-community structure that emerges from the data to uncover the major communication pathways in the network, and moreover investigate its reciprocal connections, showing that they share similar properties. A question arising from these analyses is that of determining the role of weak connections in the unfolding of cortical processes. Though we leave this question largely unanswered, we have found that weak connections pervade the entire cortex while giving rise to no community-like structure. We conjecture that whatever function they come to be found to perform will likely involve some form of cortex-wide communication or control.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466, 761764.CrossRefGoogle ScholarPubMed
Ashby, W. R. (1962). Principles of the self-organizing system. In von Foerster, H. & Zopf, G. W. Jr., (Eds.), Principles of self-organization: Transactions of the University of Illinois symposium (pp. 255278). New York: Pergamon Press.Google Scholar
Barone, P., Batardiere, A., Knoblauch, K., & Kennedy, H. (2000). Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. The Journal of Neuroscience, 20, 32633281.CrossRefGoogle ScholarPubMed
Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28, 92399248.CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277290.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198.CrossRefGoogle ScholarPubMed
Ercsey-Ravasz, M., Markov, N. T., Lamy, C., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron, 80, 184197.CrossRefGoogle ScholarPubMed
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 147.CrossRefGoogle ScholarPubMed
Goulas, A., Schaefer, A., & Margulies, D. S. (2014). The strength of weak connections in the macaque cortico-cortical network. Brain Structure and Function.Google Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PloS Biology, 6, e159.CrossRefGoogle ScholarPubMed
Hilgetag, C. C., & Grant, S. (2010). Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neuroimage, 51, 10061017.CrossRefGoogle ScholarPubMed
Kaiser, M., Martin, R., Andras, P., & Young, M. P. (2007). Simulation of robustness against lesions of cortical networks. European Journal of Neuroscience, 25, 31853192.CrossRefGoogle ScholarPubMed
Karrer, B., Levina, E., & Newman, M. E. J. (2008). Robustness of community structure in networks. Physical Review E, 77, 046119.CrossRefGoogle ScholarPubMed
Knierim, J. J., & Van Essen, D. C. (1992). Visual cortex: Cartography, connectivity, and concurrent processing. Current Opinion in Neurobiology, 2, 150155.CrossRefGoogle ScholarPubMed
Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11, 033015.CrossRefGoogle Scholar
Markov, N. T., Misery, P., Falchier, A., Lamy, C., Vezoli, J., Quilodran, R., . . . Knoblauch, K. (2011). Weight consistency specifies regularities of macaque cortical networks. Cerebral Cortex, 21, 12541272.CrossRefGoogle ScholarPubMed
Markov, N. T., Ercsey-Ravasz, M., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342, 1238406.CrossRefGoogle ScholarPubMed
Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., . . . Kennedy, H. (2014a). Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex. Journal of Comparative Neurology, 522, 225259.CrossRefGoogle ScholarPubMed
Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L., Vezoli, J., . . . Kennedy, H. (2014b). A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cerebral Cortex, 24, 1736.CrossRefGoogle ScholarPubMed
Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200.CrossRefGoogle ScholarPubMed
Modha, D. S., & Singh, R. (2010). Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences USA, 107, 1348513490.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70, 056131.CrossRefGoogle ScholarPubMed
Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., . . . Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508, 207214.CrossRefGoogle ScholarPubMed
Reid, A. T., Krumnack, A., Wanke, E., & Kötter, R. (2009). Optimization of cortical hierarchies with continuous scales and ranges. Neuroimage, 47, 611617.CrossRefGoogle ScholarPubMed
Scannell, J. W., Blakemore, C., & Young, M. P. (1995). Analysis of connectivity in the cat cerebral cortex. The Journal of Neuroscience, 15, 14631483.CrossRefGoogle ScholarPubMed
Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O'Neil, M. A., & Young, M. P. (1999). The connectional organization of the cortico-thalamic system of the cat. Cerebral Cortex, 9, 277299.CrossRefGoogle ScholarPubMed
Sporns, O. (2010). Networks of the brain. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23 (2), 162171.CrossRefGoogle ScholarPubMed
Stam, C. J. & van Straaten, E. C. W. (2012). The organization of physiological brain networks. Clinical Neurophysiology, 123, 10671087.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Sporns, O. (2013a). An anatomical substrate for integration among functional networks in human cortex. The Journal of Neuroscience, 33, 1448914500.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Sporns, O. (2013b). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683696.CrossRefGoogle ScholarPubMed
Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping community detection in networks: The state-of-the-art and comparative study. ACM Computing Surveys, 45, 43.CrossRefGoogle Scholar
Zamora-López, G., Zhou, C., & Kurths, J. (2010). Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Frontiers in Neuroinformatics, 4, 1.Google Scholar