Skip to main content Accessibility help
×
×
Home

The evolution of a mobile payment solution network

  • Kjersti Aas (a1) and Hanne Rognebakke (a1)
Abstract

Vipps is a peer-to-peer mobile payment solution launched by Norway’s largest financial services group DNB. The Vipps transaction data may be viewed as a graph with users corresponding to the nodes, and the financial transactions between the users defining the edges. We have followed the evolution of this graph from May 2015 to September 2016. This is a unique data set, as information about transactions of individuals is usually not available for research. In this paper, we use an advanced statistical model where preferential attachment is combined with fitness. We show that the intrinsic quality of the nodes in the Vipps network plays an important part in the evolution of the network. This insight may, e.g., be used to identify influential nodes for viral marketing.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The evolution of a mobile payment solution network
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The evolution of a mobile payment solution network
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The evolution of a mobile payment solution network
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author. Emails: Kjersti.Aas@nr.no, Hanne.Rognebakke@nr.no
References
Hide All
Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509512.
Barabasi, A.-L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random networks: The topology of the world-wide web. Physica A: Statistical Mechanics and Its Applications, 281, 6977.
Bianconi, G., & Barabˡsi, A. L. (2001). Competition and multiscaling in evolving networks. Europhysics Letters, 54, 436442.
Borgs, C., Chayes, J., Daskalakis, C., & Roch, S. (2007). First to market is not everything: An analysis of preferential attachment with fitness. In Proceedings of the thirty-ninth annual acm symposium on theory of computing. STOC ‘07 (pp. 135144). New York, NY, USA: ACM.
Caldarelli, G., Capocci, A., De Los Rios, P., & Muñoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters, 89, 258702-1–258702-4.
Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J., & Strogatz, S. H. (2001). Are randomly grown graphs really random? Physical Review E, 64, 041902.
Cole, S. R., Chu, H., & Greenland, S. (2014). Maximum likelihood, profile likelihood, and penalized likelihood: A primer. American Journal of Epidemiology, 179, 252260.
Dereich, S., & Mörters, P. (2009). Random networks with sublinear preferential attachment: degree evolutions. Electronic Journal of Probability, 14, 12221267.
Hunter, D., & Lange, K. (2000). Quantile regression via an MM algorithm. Journal of Computational Statistics and Data Analysis, 9, 6077.
Iñiguez, G., Ruan, Z., Kaski, K., Kertész, J., & Karsai, M. (2017). Service adoption spreading in online social networks. arXiv preprint, arXiv:1706.09777.
Kondor, D., Posfai, M., Csabai, I., & Vattay, G. (2014). Do the rich get richer? An empirical analysis of the bitcoin transaction network. PLOS ONE, 9, e86197.
Kong, J. S., Sarshar, N., & Roychowdhury, V. P. (2008). Experience versus talent shapes the structure of the web. Proceedings of the National Academy of Sciences, 105(37), 1372413729.
Krapivsky, P. L., Redner, S., & Leyvraz, F. (2000). Connectivity of growing random networks. Physics Review Letters, 85, 46294632.
Krapivsky, P. L., Rodgers, G. J., & Redner, S. (2001). Organization of growing networks. Physical Review E, 63, 066123-1–066123-14.
Kunegis, J., Blattner, M., & Moser, C. (2013). Preferential Attachment in Online Networks: Measurement and Explanations. Presented at WebSci’13 Conference, Paris.
Leskovec, J., Singh, A., & Kleinberg, J. (2006). Patterns of influence in a recommendation network. In Proceedings of the 10th pacific-asia conference on advances in knowledge discovery and data mining. PAKDD’06 (pp. 380389). Berlin, Heidelberg: Springer-Verlag.
Pham, T., Sheridan, P., & Shimodaira, H. (2015). PAFit: A statistical method for measuring preferential attachment in temporal complex networks. PLOS ONE, 9 , e0137796.
Pham, T., Sheridan, P., & Shimodaira, H. (2016). Joint estimation of preferential attachment and node fitness in the evolution of complex networks. Nature Scientific Reports, 6, 113.
Pham, T., Sheridan, P., & Shimodaira, H. (2017). PAFit: An R Package for Estimating Preferential Attachment and Node Fitness in Temporal Complex Networks. arXiv preprint, arXiv:1704.06017.
Redner, S. (1998). How popular is your paper? an empirical study of the citation distribution. The European Physical Journal B - Condensed Matter and Complex Systems, 4, 131134.
Stonedahl, F., Rand, W., & Wilensky, U. (2010). Evolving Viral Marketing Strategies. In Proceedings of the 12th annual conference on Genetic and evolutionary computation.
Yule, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society B, 213, 2187.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed