Skip to main content Accessibility help
×
×
Home

Choosing the number of groups in a latent stochastic blockmodel for dynamic networks

  • RICCARDO RASTELLI (a1), PIERRE LATOUCHE (a2) and NIAL FRIEL (a3)
Abstract

Latent stochastic blockmodels are flexible statistical models that are widely used in social network analysis. In recent years, efforts have been made to extend these models to temporal dynamic networks, whereby the connections between nodes are observed at a number of different times. In this paper, we propose a new Bayesian framework to characterize the construction of connections. We rely on a Markovian property to describe the evolution of nodes' cluster memberships over time. We recast the problem of clustering the nodes of the network into a model-based context, showing that the integrated completed likelihood can be evaluated analytically for a number of likelihood models. Then, we propose a scalable greedy algorithm to maximize this quantity, thereby estimating both the optimal partition and the ideal number of groups in a single inferential framework. Finally, we propose applications of our methodology to both real and artificial datasets.

Copyright
References
Hide All
Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9 (Sep), 19812014.
Bertoletti, M., Friel, N., & Rastelli, R. (2015). Choosing the number of clusters in a finite mixture model using an exact integrated completed likelihood criterion. Metron, 73 (2), 177199.
Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological), 48 (3), 259302.
Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (7), 719725.
Côme, E., & Latouche, P. (2015). Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood. Statistical Modelling, 15 (6), 564589.
Corneli, M., Latouche, P., & Rossi, F. (2016). Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks. Neurocomputing, 192, 8191.
Corneli, M., Latouche, P., & Rossi, F. (2017). Multiple change points detection and clustering in dynamic network. In press.
Daudin, J. J., Picard, F., & Robin, S. (2008). A mixture model for random graphs. Statistics and Computing, 18 (2), 173183.
Farajtabar, M., Wang, Y., Rodriguez, M. G., Li, S., Zha, H., & Song, L. (2015). Coevolve: A joint point process model for information diffusion and network co-evolution. In Advances in neural information processing systems. NIPS, pp. 1954–1962.
Friel, N., Rastelli, R., Wyse, J., & Raftery, A. E. (2016). Interlocking directorates in irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences, 113 (24), 66296634.
Guigourès, R., Boullé, M., & Rossi, F. (2015). Discovering patterns in time-varying graphs: A triclustering approach. Advances in Data Analysis and Classification, 128. Retrieved from https://link.springer.com/article/10.1007/s11634-015-0218-6.
Ho, Q., Song, L., & Xing, E. P. (2011). Evolving cluster mixed-membership blockmodel for time-evolving networks. Proceedings of the International Conference on Artificial Intelligence and Statistics, 15, 342350.
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97 (460), 10901098.
Ishiguro, K., Iwata, T., Ueda, N., & Tenenbaum, J. B. (2010). Dynamic infinite relational model for time-varying relational data analysis. In Advances in neural information processing systems. NIPS, 919–927.
Kim, M., & Leskovec, J. (2013). Nonparametric multi-group membership model for dynamic networks. In Advances in neural information processing systems (25). NIPS, pp. 1385–1393.
Matias, C., & Miele, V. (2017). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79 (4), 11191141.
Matias, C., Rebafka, T., & Villers, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika, 105 (3), 665680.
McDaid, A. F., Murphy, T. B., Friel, N., & Hurley, N. J. (2013). Improved bayesian inference for the stochastic block model with application to large networks. Computational Statistics & Data Analysis, 60, 1231.
Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69 (6), 066133.
Nobile, A., & Fearnside, A. T. (2007). Bayesian finite mixtures with an unknown number of components: the allocation sampler. Statistics and Computing, 17 (2), 147162.
Nowicki, K., & Snijders, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96 (455), 10771087.
Randriamanamihaga, A. N., Côme, E., Oukhellou, L., & Govaert, G. (2014). Clustering the velib dynamic origin/destination flows using a family of poisson mixture models. Neurocomputing, 141, 124138.
Sarkar, P., & Moore, A. W. (2005). Dynamic social network analysis using latent space models. Sigkdd Explorations: Special Edition on Link Mining, 7, 3140.
Strehl, A., & Ghosh, J. (2003). Cluster ensembles – A knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 3 (Dec), 583617.
Tran, L., Farajtabar, M., Song, L., & Zha, H. (2015). Netcodec: Community detection from individual activities. In Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp. 91–99.
Transport for London. (2016). Retrieved from http://cycling.data.tfl.gov.uk/.
Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17 (4), 395416.
Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82 (397), 819.
Wyse, J., Friel, N., & Latouche, P. (2017). Inferring structure in bipartite networks using the latent blockmodel and exact icl. Network Science, 5 (1), 4569.
Xing, E. P., Fu, W., & Song, L. (2010). A state-space mixed membership blockmodel for dynamic network tomography. Annals of Applied Statistics, 4 (2), 535566.
Xu, K. (2015). Stochastic block transition models for dynamic networks. In Artificial intelligence and statistics. AISTATS, pp. 1079–1087.
Xu, K. S., & Hero, A. O. (2014). Dynamic stochastic blockmodels for time-evolving social networks. IEEE Journal of Selected Topics in Signal Processing, 8 (4), 552562.
Yang, T., Chi, Y., Zhu, S., Gong, Y., & Jin, R. (2011). Detecting communities and their evolutions in dynamic social networks – A Bayesian approach. Machine Learning, 82 (2), 157189.
Zhou, K., Zha, H., & Song, L. (2013). Learning social infectivity in sparse low-rank networks using multi-dimensional hawkes processes. In Artificial intelligence and statistics. AISTATS, pp. 641–649.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed