Skip to main content Accessibility help
×
Home

Centralities for networks with consumable resources

  • Hayato Ushijima-Mwesigwa (a1), Zadid Khan (a2), Mashrur A. Chowdhury (a2) and Ilya Safro (a3)

Abstract

Identification of influential nodes is an important step in understanding and controlling the dynamics of information, traffic, and spreading processes in networks. As a result, a number of centrality measures have been proposed and used across different application domains. At the heart of many of these measures lies an assumption describing the manner in which traffic (of information, social actors, particles, etc.) flows through the network. For example, some measures only count shortest paths while others consider random walks. This paper considers a spreading process in which a resource necessary for transit is partially consumed along the way while being refilled at special nodes on the network. Examples include fuel consumption of vehicles together with refueling stations, information loss during dissemination with error-correcting nodes, and consumption of ammunition of military troops while moving. We propose generalizations of the well-known measures of betweenness, random-walk betweenness, and Katz centralities to take such a spreading process with consumable resources into account. In order to validate the results, experiments on real-world networks are carried out by developing simulations based on well-known models such as Susceptible-Infected-Recovered and congestion with respect to particle hopping from vehicular flow theory. The simulation-based models are shown to be highly correlated with the proposed centrality measures.

Reproducibility: Our code and experiments are available at https://github.com/hmwesigwa/soc_centrality

Copyright

Corresponding author

*Corresponding author. Email: hushiji@g.clemson.edu

References

Hide All
Albert, R., & Barabási, A-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.
Albert, R., Jeong, H., & Barabási, A-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378.
Altshuler, Y., Puzis, R., Elovici, Y., Bekhor, S., & Pentland, A. S. (2011). Augmented betweenness centrality for mobility prediction in transportation networks. Paper presented at the International Workshop on Finding Patterns of Human Behaviors in Networks and Mobility Data, nemo11.
Bae, J., & Kim, S. (2014). Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Physica A: Statistical Mechanics and Its Applications, 395, 549559.
Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge University Press.
Basu, A., Fleming, S., Stanier, J., Naicken, S., Wakeman, I., & Gurbani, V. K. (2013). The state of peer-to-peer network simulators. ACM Computing Surveys (CSUR), 45(4), 46.
Bavelas, A. (1948). A mathematical model for group structures. Human Organization, 7(3), 1630.
Bettencourt, L. M. A., Cintrón-Arias, A., Kaiser, D. I, & Castillo-Chávez, C. (2006). The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Physica A: Statistical Mechanics and Its Applications, 364, 513536.
Bi, Z., Kan, T., Mi, C. C., Zhang, Y., Zhao, Z., & Keoleian, G. A. (2016). A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Applied Energy, 179, 413425.
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175308.
Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 11701182.
Bonacich, Phillip. (1991). Simultaneous group and individual centralities. Social Networks, 13(2), 155168.
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 5571.
Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163177.
Brandes, U., & Fleischer, D. (2005). Centrality measures based on current flow. STACS (vol. 3404, pp. 533544). Berlin, Heidelberg: Springer.
Chen, J., & Safro, I. (2011). Algebraic distance on graphs. SIAM Journal on Scientific Computing, 33(6), 34683490.
Chen, Z., He, F., & Yin, Y. (2016). Optimal deployment of charging lanes for electric vehicles in transportation networks. Transportation Research Part B: Methodological, 91, 344365.
Cirimele, V., Freschi, F., & Guglielmi, P. (2014). Wireless power transfer structure design for electric vehicle in charge while driving. 2014 International Conference on Electrical Machines (ICEM). IEEE (pp. 24612467).
Cohen, R., Erez, K., Ben-Avraham, D., & Havlin, S. (2001). Breakdown of the internet under intentional attack. Physical Review Letters, 86(16), 3682.
Colizza, V., Pastor-Satorras, R., & Vespignani, A. (2007). Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nature Physics, 3(4), 276.
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality in networks of urban streets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(1), 015113.
Davis, T. A., & Hu, Y. (2011). The university of florida sparse matrix collection. ACM Transactions on Mathematical Software (TOMS), 38(1), 1.
Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation (Vol. 5). John Wiley & Sons.
Fouss, F., Pirotte, A., Renders, J-M., & Saerens, M. (2007). Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering, 19(3), 355369.
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215239.
Freeman, L. C, Borgatti, S. P, & White, D. R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13(2), 141154.
Fuller, M. (2016). Wireless charging in california: Range, recharge, and vehicle electrification. Transportation Research Part C: Emerging Technologies, 67, 343356.
Ghosh, R., & Lerman, K. (2012). Rethinking centrality: The role of dynamical processes in social network analysis. arxiv preprint arxiv:1209.4616.
Guimerà, R., Díaz-Guilera, A., Vega-Redondo, F., Cabrales, A., & Arenas, A. (2002). Optimal network topologies for local search with congestion. Physical Review Letters, 89(24), 248701.
Gutfraind, A., Safro, I., & Meyers, L. A. (2015). Multiscale network generation. 2015 18th international conference on information fusion (fusion) (pp. 158–165). IEEE.
Hethcote, H. W. (2000). The mathematics of infectious diseases. Siam Review, 42(4), 599653.
Holme, P. (2003). Congestion and centrality in traffic flow on complex networks. Advances in Complex Systems, 6(02), 163176.
Huisinga, T., Barlovic, R., Knospe, W., Schadschneider, A., & Schreckenberg, M. (2001). A microscopic model for packet transport in the internet. Physica A: Statistical Mechanics and Its Applications, 294(1–2), 249256.
Huitema, C. (2000). Routing in the internet. Prentice-Hall.
Interdonato, R., & Tagarelli, A. (2016). To trust or not to trust lurkers? Evaluation of lurking and trustworthiness in ranking problems. International conference and school on network science (pp. 4356). Springer.
Jang, Y. J., Ko, Y. D., & Jeong, S. (2012). Optimal design of the wireless charging electric vehicle. 2012 IEEE international electric vehicle conference (IEVC) (pp. 1–5). IEEE.
Jayasinghe, A., Sano, K., & Nishiuchi, H. (2015). Explaining traffic flow patterns using centrality measures. International Journal for Traffic and Transport Engineering, 5(2), 134149.
Jayaweera, I. M. L. N., Perera, K. K. K. R., & Munasinghe, J. (2017). Centrality measures to identify traffic congestion on road networks: A case study of Sri Lanka. IOSR Journal of Mathematics (IOSR-JM).
Jiang, B., & Claramunt, C. (2004). A structural approach to the model generalization of an urban street network. Geoinformatica, 8(2), 157171.
Jiang, B., & Jia, T. (2011). Agent-based simulation of human movement shaped by the underlying street structure. International Journal of Geographical Information Science, 25(1), 5164.
Katz, J. (1998). Luring the lurkers. Retrieved march, 1(1999), 1999.
Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 3943.
Keeling, M. J, & Rohani, P. (2011). Modeling infectious diseases in humans and animals. Princeton University Press.
Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 8193.
Kephart, J. O, Sorkin, G. B, Chess, D. M, & White, S. R. (1997). Fighting computer viruses. Scientific American, 277(5), 8893.
Khan, M. D., Chowdhury, M., Khan, S. M., Safro, I., & Ushijima-Mwesigwa, H. (2018). Utility maximization framework for opportunistic wireless electric vehicle charging. Paper presented at Transportation Research Board 97th Annual Meeting, Transportation Research Board.
Khan, Z., Khan, S. M., Chowdhury, M., Safro, I., & Ushijima-Mwesigwa, H. (2019). Wireless charging utility maximization and intersection control delay minimization framework for electric vehicles. Computer-Aided Civil and Infrastructure Engineering.
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888.
Kleinfeld, J. S. (2002). The small world problem. Society, 39(2), 6166.
Klemm, K., Serrano, M. Á., Eguíluz, V. M, & San Miguel, M. (2012). A measure of individual role in collective dynamics. Scientific Reports, 2, 292.
Lai, H-M., & Chen, T. T. (2014). Knowledge sharing in interest online communities: A comparison of posters and lurkers. Computers in Human Behavior, 35, 295306.
Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007a). The dynamics of viral marketing. ACM Transactions on the Web (TWEB), 1(1), 5.
Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007b). Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 2.
Li, D., Fu, B., Wang, Y., Lu, G., Berezin, Y., Stanley, H. E., & Havlin, S. (2015). Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences, 112(3), 669672.
Li, S., & Mi, C. C. (2015). Wireless power transfer for electric vehicle applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 417.
Liu, F., Ren, Y., & Shan, X. M. (2002). A simple cellular automata model for packet transport in the internet. Acta Physica Sinica, 51(6), 11751180.
Liu, J-G., Wu, Z-X., & Wang, F. (2007). Opinion spreading and consensus formation on square lattice. International Journal of Modern Physics C, 18(07), 10871094.
Liu, J-G., Lin, J-H., Guo, Q., & Zhou, T. (2016). Locating influential nodes via dynamics-sensitive centrality. Scientific Reports, 6, 21380.
Lukic, S., & Pantic, Z. (2013). Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles. IEEE Electrification Magazine, 1(1), 5764.
Marett, K., & Joshi, K. D. (2009). The decision to share information and rumors: Examining the role of motivation in an online discussion forum. Communications of the Association for Information Systems, 24(1), 4.
Mason, B. (1999). Issues in virtual ethnography. Ethnographic studies in real and virtual environments: Inhabited information spaces and connected communities (pp. 6169).
Moreno, Y., Nekovee, M., & Pacheco, A. F. (2004). Dynamics of rumor spreading in complex networks. Physical Review E, 69(6), 066130.
Motter, A. E. (2004). Cascade control and defense in complex networks. Physical Review Letters, 93(9), 098701.
Nagel, K. (1996). Particle hopping models and traffic flow theory. Physical Review E, 53(5), 4655.
Newman, M. E. J. (2003). The structure and function of complex networks. Siam Review, 45(2), 167256.
Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 3954.
Ning, P., Miller, J. M., Onar, O. C., & White, C. P. (2013). A compact wireless charging system for electric vehicles. 2013 IEEE energy conversion congress and exposition (ECCE). IEEE (pp. 36293634).
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Tech. Rept. Stanford InfoLab.
Park, K., & Yilmaz, A. (2010). A social network analysis approach to analyze road networks. Paper presented at ASPRS Annual Conference. San Diego, CA.
Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical Review Letters, 86(14), 3200.
Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: a primal approach. Environment and Planning B: Planning and Design, 33(5), 705725.
Preece, J., Nonnecke, B., & Andrews, D. (2004). The top five reasons for lurking: improving community experiences for everyone. Computers in Human Behavior, 20(2), 201223.
Qiu, C., Chau, K. T., Liu, C., & Chan, C. C. (2013). Overview of wireless power transfer for electric vehicle charging. 2013 world electric vehicle symposium and exhibition (EVS27). IEEE (pp. 19).
Riemann, R., Wang, D. Z. W., & Busch, F. (2015). Optimal location of wireless charging facilities for electric vehicles: Flow-capturing location model with stochastic user equilibrium. Transportation Research Part C: Emerging Technologies, 58, 112.
Ripeanu, M., & Foster, I. (2002). Mapping the Gnutella network: Macroscopic properties of large-scale peer-to-peer systems. International workshop on peer-to-peer systems (pp. 8593). Springer.
Rossi, R., & Ahmed, N. (2015). The network data repository with interactive graph analytics and visualization. AAAI (vol. 15, pp. 42924293).
Scheurer, J., Curtis, C., & Porta, S. (2008). Spatial network analysis of multimodal transport systems: Developing a strategic planning tool to assess the congruence of movement and urban structure: a case study of perth before and after the perth-to-mandurah railway. Paper presented at GAMUT, Australasian Centre for the Governance and Management of Urban Transport, University of Melbourne.
Schlosser, A. E. (2005). Posting versus lurking: Communicating in a multiple audience context. Journal of Consumer Research, 32(2), 260265.
Shaydulin, R., Chen, J., & Safro, I. (2017). Relaxation-based coarsening for multilevel hypergraph partitioning. SIAM Multiscale Modeling and Simulation, preprint arxiv:1710.06552.
Šikić, M., Lančić, A., Antulov-Fantulin, N., & Štefančić, H. (2013). Epidemic centralities there an underestimated epidemic impact of network peripheral nodes? The European Physical Journal B, 86(10), 440.
Soroka, V., Jacovi, M., & Ur, S. (2003). We can see you: a study of communities invisible people through reachout. Communities and technologies (pp. 6579). Springer.
Southworth, M., & Ben-Joseph, E. (2013). Streets and the shaping of towns and cities. Island Press.
Spring, N., Mahajan, R., & Wetherall, D. (2002). Measuring ISP topologies with rocketfuel. SIGCOMM (vol. 32, pp. 133145).
Staudt, C. L., Hamann, M., Gutfraind, A., Safro, I., & Meyerhenke, H. (2017). Generating realistic scaled complex networks. Applied Network Science, 2(1), 36.
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268.
Tagarelli, A., & Interdonato, R. (2013). Who’s out there? Identifying and ranking lurkers in social networks. Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 215222). ACM.
Tagarelli, A., & Interdonato, R. (2014). Lurking in social networks: topology-based analysis and ranking methods. Social Network Analysis and Mining, 4(1), 230.
Tao, Z., Zhongqian, F., & Binghong, W. (2006). Epidemic dynamics on complex networks. Progress in Natural Science, 16(5), 452457.
Tsoumakos, D., & Roussopoulos, N. (2006). Analysis and comparison of p2p search methods. Proceedings of the 1st international conference on scalable information systems (p. 25). ACM.
Ushijima-Mwesigwa, H., Khan, M. D., Chowdhury, M. A., & Safro, I. (2017). Optimal installation for electric vehicle wireless charging lanes. arxiv preprint arxiv:1704.01022.
Van Mierlo, T. (2014). The 1% rule in four digital health social networks: An observational study. Journal of Medical Internet Research, 16(2).
Vilathgamuwa, D. M., & Sampath, J. P. K. (2015). Wireless power transfer for electric vehicles, present and future trends. Plug in electric vehicles in smart grids (pp. 3360). Springer.
Wang, P., Hunter, T., Bayen, A. M., Schechtner, K., & González, M. C. (2012). Understanding road usage patterns in urban areas. Scientific Reports, 2, 1001.
Wang, Y., Yun, X., & Li, Y. (2007). Analyzing the characteristics of gnutella overlays. Fourth international conference on information technology, 2007 (ITNG’07) (pp. 10951100). IEEE.
Watts, D. J., Peretti, J., & Frumin, M. (2007). Viral marketing for the real world. Harvard Business School Pub.
Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling, 17(2), 118.
Yan, G., Zhou, T., Hu, B., Fu, Z-Q., & Wang, B-H. (2006). Efficient routing on complex networks. Physical Review E, 73(4), 046108.
Zhang, Y., Wang, X., Zeng, P., & Chen, X. (2011). Centrality characteristics of road network patterns of traffic analysis zones. Transportation Research Record: Journal of the Transportation Research Board, 2256(1), 1624.
Zhao, L., Xie, W., Gao, H. O., Qiu, X., Wang, X., & Zhang, S. (2013). A rumor spreading model with variable forgetting rate. Physica A: Statistical Mechanics and Its Applications, 392(23), 61466154.

Keywords

Centralities for networks with consumable resources

  • Hayato Ushijima-Mwesigwa (a1), Zadid Khan (a2), Mashrur A. Chowdhury (a2) and Ilya Safro (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed