Skip to main content Accessibility help

Bayesian dynamic modeling and monitoring of network flows

  • Xi Chen (a1), David Banks (a2) and Mike West (a2)


In the context of a motivating study of dynamic network flow data on a large-scale e-commerce website, we develop Bayesian models for online/sequential analysis for monitoring and adapting to changes reflected in node–node traffic. For large-scale networks, we customize core Bayesian time series analysis methods using dynamic generalized linear models (DGLMs). These are integrated into the context of multivariate networks using the concept of decouple/recouple that was recently introduced in multivariate time series. This method enables flexible dynamic modeling of flows on large-scale networks and exploitation of partial parallelization of analysis while maintaining coherence with an over-arching multivariate dynamic flow model. This approach is anchored in a case study on Internet data, with flows of visitors to a commercial news website defining a long time series of node–node counts on over 56,000 node pairs. Central questions include characterizing inherent stochasticity in traffic patterns, understanding node–node interactions, adapting to dynamic changes in flows and allowing for sensitive monitoring to flag anomalies. The methodology of dynamic network DGLMs applies to many dynamic network flow studies.


Corresponding author

*Corresponding author. Email:


Hide All
Anacleto, O., Queen, C., & Albers, C. J. (2013a). Forecasting multivariate road traffic flows using Bayesian dynamic graphical models, splines and others traffic variables. Australian and New Zealand Journal of Statistics, 55, 6986.
Anacleto, O., Queen, C., & Albers, C. J. (2013b). Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors. Journal of the Royal Statistical Society (Series C: Applied Statistics), 62, 251270.
Berry, L. R., & West, M. (2019). Bayesian forecasting of many count-valued time series. Journal of Business and Economic Statistics (in press).
Berry, L. R., Helman, P., & West, M. (2019). Probabilistic forecasting of heterogeneous consumer transaction-sales time series. International Journal of Forecasting (in press).
Bianchi, D., Billio, M., Casarin, R., & Guidolin, M. (2018). Modeling systemic risk with Markov switching graphical SUR models. Journal of Econometrics, 210, 5874.
Chen, X., Irie, K., Banks, D., Haslinger, R., Thomas, J., & West, M. (2018). Scalable Bayesian modeling, monitoring and analysis of dynamic network flow data. Journal of the American Statistical Association, 113, 519533.
Congdon, P. (2000). A Bayesian approach to prediction using the gravity model, with an application to patient flow modeling. Geographical Analysis, 32, 205224.
Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E. and Vijayadamodar, G. (2003). A protein interaction map of Drosophila Melanogaster. Science, 302, 17271736.
Giraitis, L., Kapetanios, G., Wetherilt, A., & Žikeš, F. (2016). Estimating the dynamics and persistence of financial networks, with an application to the Sterling money market. Journal of Applied Econometrics, 31, 5884.
Goldstein, M. (1976). Bayesian analysis of regression problems. Biometrika, 63, 5158.
Gruber, L. F., & West, M. (2016). GPU-accelerated Bayesian learning in simultaneous graphical dynamic linear models. Bayesian Analysis, 11, 125149.
Gruber, L. F., & West, M. (2017). Bayesian forecasting and scalable multivariate volatility analysis using simultaneous graphical dynamic linear models. Econometrics and Statistics, 3, 322.
Hanneke, S., Fu, W., & Xing, E. P. (2010). Discrete temporal models of social networks. Electronic Journal of Statistics, 4, 585605.
Hartigan, J. A. (1969). Linear Bayesian methods. Journal of the Royal Statistical Society (Series B: Methodological), 31, 446454.
Hoff, P. D. (2011). Hierarchical multilinear models for multiway data. Computational Statistics and Data Analysis, 55, 530543.
Holme, P. (2015). Modern temporal network theory: A colloquium. European Physical Journal B, 88, 234.
Holme, P., & Saramäki, J. (2013). Temporal Networks. Springer.
Jansen, B. J., Spink, A., & Kathuria, V. (2007). How to define searching sessions on web search engines. Pages 92–109 of: Nasraoui, O., Spiliopoulou, M., Srivastava, J., Mobasher, B., & Masand, B. (eds), Advances in Web Mining and Web Usage Analysis: Eighth International Workshop on Knowledge Discovery on the Web, WebKDD 2006. Lecture Notes in Computer Science. Springer.
Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics Surveys, 12, 105135.
Koren, R., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 8, 3037.
McCullough, P., & Nelder, J. A. (1989). Generalized Linear Models. New York: Chapman & Hall.
Migon, H. S., & Harrison, P. J. (1985). An application of non-linear Bayesian forecasting to television advertising. In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., & Smith, A. F. M. (Eds.), Bayesian Statistics 2 (pp. 681696). North-Holland, Amsterdam: Valencia University Press.
Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70, 056131.
Newman, M. E. J. (2018). Network structure from rich but noisy data. Nature Physics, 14, 542.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2, 1135.
Prado, R., & West, M. (2010). Time Series: Modeling, Computation and Inference. Chapman & Hall/CRC Press.
Queen, C. M., & Albers, C. J. (2009). Intervention and causality: Forecasting traffic flows using a dynamic Bayesian network. Journal of the American Statistical Association, 104, 669681.
Richard, E., Gaïffas, S., & Vayatis, N. (2014). Link prediction in graphs with autoregressive features. Journal of Machine Learning Research, 15, 565593.
Sarkar, P., Siddiqi, S. M., & Gordon, G. J. (2007). A latent space approach to dynamic embedding of co-occurrence data. Artificial Intelligence and Statistics, 420427.
Sen, A., & Smith, T. (1995). Gravity Models of Spatial Interaction Behavior. Springer.
Soriano, J., Au, T., & Banks, D. (2013). Text mining in computational advertising. Statistical Analysis and Data Mining, 6, 273285.
Tebaldi, C., & West, M. (1998). Bayesian inference on network traffic using link count data. Journal of the American Statistical Association, 93, 557573.
Tebaldi, C., West, M., & Karr, A. F. (2002). Statistical analyses of freeway traffic flows. Journal of Forecasting, 21, 3968.
Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P. and Qureshi-Emili, A. (2000). A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature, 403, 623.
West, M. (1985). Generalized linear models: Scale parameters, outlier accommodation and prior distributions (with discussion). In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., & Smith, A. F. M. (Eds.), Bayesian Statistics 2 (pp. 531558). North-Holland, Amsterdam: Valencia University Press.
West, M. (1994). Statistical inference for gravity models in transportation flow forecasting. Discussion Paper 94-20, Duke University, and Technical Report #60, National Institute of Statistical Sciences.
West, M., & Harrison, P. J. (1997). Bayesian Forecasting and Dynamic Models. 2nd edn. Springer.
West, M., Harrison, P. J., & Migon, H. S. (1985). Dynamic generalized linear models and Bayesian forecasting (with discussion). Journal of the American Statistical Association, 80, 7383.
Xing, E. P., Fu, W., & Song, L. (2010). A state-space mixed membership block model for dynamic network tomography. Annals of Applied Statistics, 4, 535566.
Xu, K. S., & Hero, A. O. (2014). Dynamic stochastic block models for time-evolving social networks. IEEE Journal of Selected Topics in Signal Processing, 8, 552562.


Bayesian dynamic modeling and monitoring of network flows

  • Xi Chen (a1), David Banks (a2) and Mike West (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed