Skip to main content Accessibility help
×
Home

Choosing the number of groups in a latent stochastic blockmodel for dynamic networks

Published online by Cambridge University Press:  15 November 2018

RICCARDO RASTELLI
Affiliation:
School of Mathematics and Statistics, University College Dublin, Dublin, Ireland (e-mail: riccardo.rastelli@ucd.ie)
PIERRE LATOUCHE
Affiliation:
Laboratoire MAP5, UMR CNRS 8145, Université Paris Descartes & Sorbonne Paris Cité, Paris, France (e-mail: pierre.latouche@univ-paris1.fr)
NIAL FRIEL
Affiliation:
School of Mathematics and Statistics and Insight: Centre for Data Analytics, University College Dublin, Dublin, Ireland (e-mail: nial.friel@ucd.ie)

Abstract

Latent stochastic blockmodels are flexible statistical models that are widely used in social network analysis. In recent years, efforts have been made to extend these models to temporal dynamic networks, whereby the connections between nodes are observed at a number of different times. In this paper, we propose a new Bayesian framework to characterize the construction of connections. We rely on a Markovian property to describe the evolution of nodes' cluster memberships over time. We recast the problem of clustering the nodes of the network into a model-based context, showing that the integrated completed likelihood can be evaluated analytically for a number of likelihood models. Then, we propose a scalable greedy algorithm to maximize this quantity, thereby estimating both the optimal partition and the ideal number of groups in a single inferential framework. Finally, we propose applications of our methodology to both real and artificial datasets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9 (Sep), 19812014.Google ScholarPubMed
Bertoletti, M., Friel, N., & Rastelli, R. (2015). Choosing the number of clusters in a finite mixture model using an exact integrated completed likelihood criterion. Metron, 73 (2), 177199.CrossRefGoogle Scholar
Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological), 48 (3), 259302.CrossRefGoogle Scholar
Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (7), 719725.CrossRefGoogle Scholar
Côme, E., & Latouche, P. (2015). Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood. Statistical Modelling, 15 (6), 564589.CrossRefGoogle Scholar
Corneli, M., Latouche, P., & Rossi, F. (2016). Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks. Neurocomputing, 192, 8191.CrossRefGoogle Scholar
Corneli, M., Latouche, P., & Rossi, F. (2017). Multiple change points detection and clustering in dynamic network. In press.Google Scholar
Daudin, J. J., Picard, F., & Robin, S. (2008). A mixture model for random graphs. Statistics and Computing, 18 (2), 173183.CrossRefGoogle Scholar
Farajtabar, M., Wang, Y., Rodriguez, M. G., Li, S., Zha, H., & Song, L. (2015). Coevolve: A joint point process model for information diffusion and network co-evolution. In Advances in neural information processing systems. NIPS, pp. 1954–1962.Google Scholar
Friel, N., Rastelli, R., Wyse, J., & Raftery, A. E. (2016). Interlocking directorates in irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences, 113 (24), 66296634.CrossRefGoogle ScholarPubMed
Guigourès, R., Boullé, M., & Rossi, F. (2015). Discovering patterns in time-varying graphs: A triclustering approach. Advances in Data Analysis and Classification, 128. Retrieved from https://link.springer.com/article/10.1007/s11634-015-0218-6.Google Scholar
Ho, Q., Song, L., & Xing, E. P. (2011). Evolving cluster mixed-membership blockmodel for time-evolving networks. Proceedings of the International Conference on Artificial Intelligence and Statistics, 15, 342350.Google Scholar
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97 (460), 10901098.CrossRefGoogle Scholar
Ishiguro, K., Iwata, T., Ueda, N., & Tenenbaum, J. B. (2010). Dynamic infinite relational model for time-varying relational data analysis. In Advances in neural information processing systems. NIPS, 919–927.Google Scholar
Kim, M., & Leskovec, J. (2013). Nonparametric multi-group membership model for dynamic networks. In Advances in neural information processing systems (25). NIPS, pp. 1385–1393.Google Scholar
Matias, C., & Miele, V. (2017). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79 (4), 11191141.CrossRefGoogle Scholar
Matias, C., Rebafka, T., & Villers, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika, 105 (3), 665680.CrossRefGoogle Scholar
McDaid, A. F., Murphy, T. B., Friel, N., & Hurley, N. J. (2013). Improved bayesian inference for the stochastic block model with application to large networks. Computational Statistics & Data Analysis, 60, 1231.CrossRefGoogle Scholar
Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69 (6), 066133.CrossRefGoogle ScholarPubMed
Nobile, A., & Fearnside, A. T. (2007). Bayesian finite mixtures with an unknown number of components: the allocation sampler. Statistics and Computing, 17 (2), 147162.CrossRefGoogle Scholar
Nowicki, K., & Snijders, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96 (455), 10771087.CrossRefGoogle Scholar
Randriamanamihaga, A. N., Côme, E., Oukhellou, L., & Govaert, G. (2014). Clustering the velib dynamic origin/destination flows using a family of poisson mixture models. Neurocomputing, 141, 124138.CrossRefGoogle Scholar
Sarkar, P., & Moore, A. W. (2005). Dynamic social network analysis using latent space models. Sigkdd Explorations: Special Edition on Link Mining, 7, 3140.CrossRefGoogle Scholar
Strehl, A., & Ghosh, J. (2003). Cluster ensembles – A knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 3 (Dec), 583617.Google Scholar
Tran, L., Farajtabar, M., Song, L., & Zha, H. (2015). Netcodec: Community detection from individual activities. In Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp. 91–99.Google Scholar
Transport for London. (2016). Retrieved from http://cycling.data.tfl.gov.uk/.Google Scholar
Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17 (4), 395416.CrossRefGoogle Scholar
Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82 (397), 819.CrossRefGoogle Scholar
Wyse, J., Friel, N., & Latouche, P. (2017). Inferring structure in bipartite networks using the latent blockmodel and exact icl. Network Science, 5 (1), 4569.CrossRefGoogle Scholar
Xing, E. P., Fu, W., & Song, L. (2010). A state-space mixed membership blockmodel for dynamic network tomography. Annals of Applied Statistics, 4 (2), 535566.CrossRefGoogle Scholar
Xu, K. (2015). Stochastic block transition models for dynamic networks. In Artificial intelligence and statistics. AISTATS, pp. 1079–1087.Google Scholar
Xu, K. S., & Hero, A. O. (2014). Dynamic stochastic blockmodels for time-evolving social networks. IEEE Journal of Selected Topics in Signal Processing, 8 (4), 552562.CrossRefGoogle Scholar
Yang, T., Chi, Y., Zhu, S., Gong, Y., & Jin, R. (2011). Detecting communities and their evolutions in dynamic social networks – A Bayesian approach. Machine Learning, 82 (2), 157189.CrossRefGoogle Scholar
Zhou, K., Zha, H., & Song, L. (2013). Learning social infectivity in sparse low-rank networks using multi-dimensional hawkes processes. In Artificial intelligence and statistics. AISTATS, pp. 641–649.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 144 *
View data table for this chart

* Views captured on Cambridge Core between 15th November 2018 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-mhpm4 Total loading time: 0.34 Render date: 2021-01-19T06:52:56.340Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Jan 19 2021 06:05:09 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Choosing the number of groups in a latent stochastic blockmodel for dynamic networks
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Choosing the number of groups in a latent stochastic blockmodel for dynamic networks
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Choosing the number of groups in a latent stochastic blockmodel for dynamic networks
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *