Skip to main content Accessibility help
×
Home

Seismic hazard analysis results for the Lower Rhine Graben and the importance of paleoseismic data

  • K. Atakan (a1), A. Ojeda (a1), T. Camelbeeck (a2) and M. Meghraoui (a3)

Abstract

Seismic hazard in low seismicity areas of Europe has traditionally been considered insignificant. However, in the light of the recently conducted paleoseismic studies along the Rhine Graben, a revision is required. Previously applied standard probabilistic seismic hazard assessment (PSHA) methods, using Poissonian approach for the earthquake occurrence, can now be substituted by renewal models where fault parameters such as the maximum magnitude, recurrence interval and the elapsed time since the last occurrence of a large earthquake, can be utilized. In this study, the application and the influence of the available paleoseismic data in the Lower Rhine Graben to seismic hazard analysis is demonstrated. The resulting hazard maps, when compared to the standard PSHA using Poissonian approach, indicate a more precise geographical distribution of the estimated seismic hazard levels. The influence of the paleoseismic data seem to be less important for return periods less than a 1000 years. Among the different input models, the highest values reach to 170 cm/sec2 for a 1000 year return period using a combination of Poissonian and renewal models.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Seismic hazard analysis results for the Lower Rhine Graben and the importance of paleoseismic data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Seismic hazard analysis results for the Lower Rhine Graben and the importance of paleoseismic data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Seismic hazard analysis results for the Lower Rhine Graben and the importance of paleoseismic data
      Available formats
      ×

Copyright

References

Hide All
Ambraseys, N.N., Simpson, K.A. & Bommer, J., 1996. Prediction of horizontal response spectra in Europe. Earthquake Engineering and Structural Dynamics, vol. 25: 371400.
Atakan, K., Midzi, V., Toirán, B.M., Vanneste, K., Camelbeeck, T. and Meghraouij, M., 2000a. Seismic hazard in regions of present day low seismic activity: Uncertainties in paleoseismic investigations in the Bree fault scarp (Roer Graben, Belgium). Soil Dynamics and Earthquake Engineering, Vol.20, No. 58: 415427.
Atakan, K., Ojeda, A. & PALEOSIS Working Group, 2000b. Seismic hazard and the long term seismic activity in Europe: A case study from the Lower Rhine Embayment. In: Camelbeeck, T. (Ed.), Proceedings of the Workshop on the ‘Evaluation of the potential for large earthquakes in present-day low seismic activity regions of Europe’ 13–17 March 2000, Han-sur-Lesse, Belgium: 912.
Bender, B. & Perkins, D.M., 1987. SEISRISK III: A computer program for seismic hazard estimation. United States geological Survey, Bulletin 1772: 24p.
Berger, N., 1994. Attenuation of seismic ground motion due to the 1992 Roermond earthquake, the Netherlands (extended abstract). Geologie en Mijnbouw 73: 309313.
Camelbeeck, T. & van Eck, T., 1994. The Roer Valley graben earthquake of 13 April 1992 and its seismotectonic setting. Terra Nova 6: 291.
Camelbeeck, T. & Meghraoui, M., 1996. Large earthquakes in northern Europe more likely than once thought. EOS, Transaction SyAm. Geophys. Union, Vol.77, No.42: 405409.
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large paleoearthquakes with surface faulting in the Roer Graben (Northwest Europe). Geophysical Journal International 132: 347362.
Cornell, C.A., 1968. Engineering seismic risk analysis. Bull. Seism. Soc.Am., 58: 15831606.
Crone, A.J., Machete, M.N. & Bowman, J.R., 1992. The episodic nature of earthquake activity in stable continental regions. US Geol. Surv. Bull. 2032-A: 51 p.
De Crook, Th., 1993. Probabilistic seismic hazard assessment for the Netherlands. Geologie en Mijnbouw 72: 113.
De Crook, Th., 1996. A seismic zoning map conforming to Eu-rocode 8, and practical earthquake parameter relations for the Netherlands. Geologie en Mijnbouw 75: 1118.
Gariel, J.C., Horrent, C., Jongmans, D. And Camelbeeck, T., 1994. Strong ground motion computation of the 1992 Roermond earthquake, the Netherlands, from linear methods using locally recorded aftershocks. Geologie en Mijnbouw 73: 315321.
Griinthal, G., & the GSHAP Region 3 Working Group, 1999. Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3. Annali di Geofisica 42: 9991011.
McGuire, R.K., 1976. EQRISK: Evaluation of earthquake risk to site. United States Geological Survey, Open File Report 76–67: 69p.
McGuire, R.K., 1993. Computations of seismic hazard. Annali di Geofisica, Vol.XXXVl, No3–4: 181200.
Meghraoui, M., Camelbeeck, T., Vanneste, K. & Brondeel, M., 2000. Active faulting and paleoseismology along the Bree fault, lower Rhine graben, Belgium. J. Geophys. Res., 105: 13, 809–13, 841.
Ordaz, M., 1999. CRISIS99. A computer program to compute seismic hazard. Authonomous University of Mexico (UNAM).
Rosenhauer, W. & Ahorner, L., 1994. Seismic hazard assessment for the Lower Rhine Embayment before and after the 1992 Roermond earthquake. Geol. Mijnbouw, 73: 415.
Schwartz, D.P. 1988. Geologic characterization of seismic sources: moving into the 1990’s. Earthquake Engineering and Soil Dynamics II Proceedings. GT Div., ASCE, Park City, Utah, USA, June 1988:42p.
Schwartz, D.P. & Coppersmith, K.J., 1984. Fault behaviour and characteristic earthquakes – Examples from the Wasatch and San Andreas fault zones. J. Geophys. Res. 89: 56815698.
Sieh, K., 1978. Slip along the San Andreas Fault associated with the great 1857 earthquake. Ball Seismol. Soc. Am. 68: 14211448.
Spudich, P., Fletcher, J.B., Hellweg, M., Boatwright, J., Sullivan, C., Joyner, W.B., Hanks, T.C., Boore, D.M., McGarr, A., Baker, L.M., & Lindh, A.G., 1997. SEA96 – A new predictive relation for earthquake ground motions in extensional tectonic regimes. Seismological Research Letters, 68: 190198.
Van Eck, T. and Davenport, C.A., 1994. Seismotectonics and seismic hazard in the Roer Valley Graben: an overview. Geologie en Mijnbouw 73: 9598.
Vanneste, K., Meghraoui, M. & Camelbeeck, T., 1999, Late Quaternary earthquake related soft-sediment deformation along the Belgian portion of the Feldbiss fault. Lower Rhine Graben System. Tectonophysics 309 (1–4): 5759.
Wallace, R.E., 1970. Earthquake recurrence intervals on the San Andreas Fault. Geol. Soc.Am. Bull 81: 28752890.
Wells, D.L. & Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacements. Bull. Seismol. Soc. Am., 84: 9741002.
Youngs, R.R. & Coppersmith, K.J., 1985. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull. Seismol. Soc.Am., 75: 939964.

Keywords

Seismic hazard analysis results for the Lower Rhine Graben and the importance of paleoseismic data

  • K. Atakan (a1), A. Ojeda (a1), T. Camelbeeck (a2) and M. Meghraoui (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed