Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T13:11:56.187Z Has data issue: false hasContentIssue false

Reservoir characteristics of intracontinental carbonate ramp deposits-Upper Muschelkalk, Middle Triassic, NE Netherlands

Published online by Cambridge University Press:  01 April 2016

M. C. Pöppelreiter
Affiliation:
Nederlandse Aardolie Maatschapij, Schepersmaat 2, P.O. Box 28000, 9400 HH Assen, the Netherlands.
A. Simone
Affiliation:
Nederlandse Aardolie Maatschapij, Schepersmaat 2, P.O. Box 28000, 9400 HH Assen, the Netherlands.
G. Hoetz
Affiliation:
Nederlandse Aardolie Maatschapij, Schepersmaat 2, P.O. Box 28000, 9400 HH Assen, the Netherlands.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Upper Muschelkalk is an unusual reservoir in NW Europe, producing only in the Coevorden Muschelkalk field, onshore the Netherlands. Origin and nature of the gas producing intervals were poorly known. The objective of the paper is to provide a comprehensive description of facies, cyclicity and petrophysical characteristics. From this description a depositional and sequence stratigraphic model is proposed, which explains why there is gas production only from certain intervals of the sequence. Our investigation is based on seismic, core and open hole log data. It indicates that the reservoir consists of dolomites, which are either muddy lagoonal to sabkha, or grainy backshoal deposits. The best reservoir quality is encountered in peloidal-oolitic packstones to grainstones. These represent storm-dominated backshoal deposits and constitute the inner part of a homoclinal carbonate ramp. The succession shows a conspicuous hierarchical cyclicity. Porous backshoal deposits form during maximum transgression and early regression. However permeable, gas producing backshoal deposits only occur in the upper 15 to 20 m, which forms the large-scale regressive hemi-cycle of the Upper Muschelkalk. Better reservoir quality in the upper hemi-cycle is due to changes in grain type and early diagenesis. The investigation might serve as calibration point for further exploring the Upper Muschelkalk reservoir and its facies pattern in the NW European basin.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Aigner, T., 1985. Storm depositional systems. Dynamic stratigraphy in modern and ancient shallow marine sequences. Lecturer Notes in Earth Science 3. Springer Verlag, (Berlin): 174 pp.Google Scholar
Aigner, T. & Bachmann, G.H., 1992 Sequence stratigraphic framework of the German Triassic. Sedimentary Geology 80: 115–135.CrossRefGoogle Scholar
Borkhataria, R., 2002. Reservoir model for the Upper Muschelkalk of the Coevorden field and the NE Netherlands. Unpublished extramural research project module B: 1–35.Google Scholar
Braun, S., 2000. Quantitative analysis of carbonate sandbodies: outcrop analog study from an epicontinental basin (Triassic, Germany). Unpublished extramural research project CP 00621. Shell International Exploration and Production (The Hague): 1–53.Google Scholar
Choquette, P.W. & Pray, L.C., 1970. Geologic nomenclature and classification of porosity in carbonates. Bulletin of the American Association of Petroleum Geologists 54: 207–250.Google Scholar
Dercourt, J., Ricou, L.E. & Wrielynck, B. (eds), 1993. Atlas Tethys Paleoenvironmental maps. Gauthier-Villars (Paris): 135 pp.Google Scholar
Duchrow, H., 1984. Der Keuper im Osnabrücker Bergland. Mit einer Revision der Nordwestdeutschen Trias-Gliederung. In: Klassen, H. (Ed.) Geologie des Osnabrücker Berglandes. Naturwissenschaftliches Museum, Osnabrück: 221–333.Google Scholar
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. Memoirs of the American Association of Petroleum Geologists 1: 108–121.Google Scholar
Gärtner, H., 1993. Zur Gliederung des Muschelkalks in Nordwestdeutschland anhand von Bohrlochmessungen. In: Hagdorn, H. & Seilacher, A. (eds) Muschelkalk. Schöntaler Symposium 1991. Sonderbände der Gesellschaft für Naturkunde in Württemberg 2: 183 pp.Google Scholar
Hagdorn, H., Hickethier, H., Horn, M. & Simon, T., 1987. Profile durch den hessischen, unterfränkischen und baden-württembergischen Muschelkalk. Geologisches Jahrbuch Hessen 115: 131–160.Google Scholar
Hoetz, G., Pöppelreiter, M., den Bezemer, T. & Simone, A., 2001. Knappersveld -Coevorden Muschelkalk- field development plan. Unpublished NAM report 200201000793: 18 pp.Google Scholar
Kerans, C. & Ticker, S., 1997. Sequence stratigraphy and characterisation of carbonate reservoirs. Society of Economic Petrologists and Minerologists Short Course No. 40 (Tulsa): 130 pp.Google Scholar
Kostnic, B., 2001. Sedimentäre Strukturen, Fazies und Poroperm-Eigenschaften in ausgewählten “Karbonatsanden”: Quaderkalk, Oberer Muschelkalk. MSc thesis. (University of Tübingen): 86 pp.Google Scholar
Lucia, F.J., 1999. Carbonate reservoir characterization. Springer Verlag (Berlin): 226 pp.CrossRefGoogle Scholar
Lucia, F.J., Jennings, J.W. Jr., Rahnis, M. & Meyer, F.O., 2001. Permeability and rock fabric from wireline logs, Arab-D reservoir, Ghawar field, Saudi Arabia. GeoArabia 6(4): 619–646.Google Scholar
v.d.Mabillard, J.E. Baan, D., Speksnijder, A., Bloch, G. & Kuilman, L., 1989. The regional geology of the Germanic Triassic. Unpublished NAM report 19.088: 164 pp.Google Scholar
Marsaglia, K.M. & de Vries Klein, G. 1983. The palaeogeography of Palaeozoic and Mesozoic storm depositional systems. Journal of Geology 91: 117–142.CrossRefGoogle Scholar
Pipping, C.J.E., 1999. Subdivision of the Upper Muschelkalk (Middle Triassic, Anisian) in the Coevorden field and the northeastern part of the Netherlands. Unpublished NAM report 199906000460: 54 pp. Google Scholar
Pöppelreiter, M., 2001. Reservoir geological review of the Upper Muschelkalk carbonates in the Coevorden field. Unpublished NAM report 200106000958: 11 pp.Google Scholar
Röhl, U., 1990. Parallelisierung des norddeutschen oberen Muschelkalks mit dem süddeutschen Hauptmuschelkalk anhand von Sedimentationszyklen. Geologische Rundschau 79(1): 13–26.CrossRefGoogle Scholar
Ruf, M., 2001. Facies distribution, petrophysics and mapping of selected carbonate sand bodies in the Upper Muschelkalk, South German basin: A reservoir analogue investigation. MSc thesis. (University of Tübingen): 106 pp.Google Scholar
Schauer, M. & Aigner, T., 1997. Cycle stacking pattern, diagenesis and reservoir geology of peritidal dolostones, Trigonodus-Dolomit, Upper Muschelkalk (Middle Triassic, SW-Germany). Facies 37: 99–114.CrossRefGoogle Scholar
Simone, A., 2001. Coevorden Knappersveld area - Upper Muschelkalk Petrophysical Review. Unpublished NAM report 200104100735: 22 pp.Google Scholar
Sonnenfeld, M.D. & Cross, T.A., 1993 Volumetric partitioning and facies differentiation within the Permian Upper San Andres Formation of the Last Chance canyon, Guadalupe Mountains, New Mexico. In: Lounks, R.G. & Sarg, J.F. (eds) Carbonate sequence stratigraphy: Recent developments & Applications. American Association of Petroleum Geologists Memoir 57: 435–474.Google Scholar
Szulc, J., 1999. Anisian-Carnian evolution of the Germanic basin and its eustatic, tectonic and climatic controls. In: Bachmann, G. & Lerche, I. (Eds) Epicontinental Triassic. Zentralblatt für Geologie and Paläontologie 1(7-8): 813–852.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P., 1993. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Medelingen Rijks Geologische Dienst 50: 1–23.Google Scholar
Wright, V.P., 1992. A revised classification of limestones. Sedimentary Geology 76: 177–185.CrossRefGoogle Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe. Shell International Petroleum Maatschappij B.V. (Amsterdam): 238 pp.Google Scholar