Skip to main content Accessibility help
×
Home

Radionuclide transport in clay during climate change

  • A.F.B. Wildenborg (a1), B. Orlic (a1), J.F. Thimus (a2), G. de Lange (a1), S. de Cock (a2), C.S. de Leeuw (a1) (a3) and E.J.M. Veling (a4)...

Abstract

The Dutch national research programme into the feasibility of retrievable storage of radioactive waste (CORA Programme Phase I; CORA: Comité Opslag Radioactief Afval = Committee on Radioactive Waste Disposal) examined the suitability of Tertiary clay deposits for such storage. Long-term isolation – up to 1 million years – of high-level radioactive waste under varying conditions is essential. A key concern is the hydro-mechanical response of the clay deposits in which radioactive waste might possibly be stored, in particular during glacial climate conditions as has happened repeatedly in the Netherlands during the Pleistocene. To evaluate this possibility hydro-mechanical computer simulations and mechanical laboratory experiments have been performed to analyse the effects of glacial loading by a thousand-metre-thick ice sheet on the permeability characteristics, fluid flow rates and the associated migration of radio-nuclides both within and out of Tertiary clays.

Glacial loading causes the expulsion of pore water from deeply buried clay deposits into adjoining aquifers. The rates and duration of the consolidation-driven outflow of water from the clay deposit, are very sensitive to the permeability of the clay and the dynamics of the advancing ice sheet. The maximum outflow rate of pore water is 1 mm per year. This rate is approximately three times faster than the flow rate of water in clay prior to ice loading. These preliminary simulation studies also indicate that cyclic loading can result in more rapid migration of radio-nuclides in clays. In clay deposits that are covered by a thick ice sheet, the contribution of dispersed transport relative to the total transport by diffusion amounts to 14%, assuming that there is no absorption of radio-nuclides by the clays and a longitudinal dispersivity of 50 m.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Radionuclide transport in clay during climate change
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Radionuclide transport in clay during climate change
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Radionuclide transport in clay during climate change
      Available formats
      ×

Copyright

References

Hide All
Bishop, A.W., Webb, D.L. & Lewin, P.I., 1965. Undisturbed samples of London Clay from the Ashford Common Shaft: strength-effective stress relationships. Géotechnique, 15: 131.
Boulton, G.S. & Curle, F., 1997. Simulation of the effects of long-term climatic changes on groundwater flow and the safety of geological disposal sites. University of Edinburgh, RIVM & RGD, European Commission, Nuclear Science and Technology, EUR 17793 EN.
Burland, J.B., 1990. On the compressibility and shear strength of natural clays. Géotechnique, 3: 327378.
CORA Cie, 2001. Terugneembare berging, een begaanbaar pad? Onderzoek naar de mogelijkheden van terugneembare berging van radioactief afval in Nederland: 110 pp.
DIANA 7.2, Program and User’s Manuals, 2000. TNO Building and Construction Research.
Hageman, B.P. and Van de Vate, L. (in press). Retrievable disposal of radioactive waste in the Netherlands. In: Witherspoon, P.A. Geological problems in radioactive waste isolation -Third worldwide review, Chapter 20, LBNL.
Grupa, J.B. & Houkema, M., 2000. Terughaalbare opberging van radioactief afval in diepe zout- en kleiformaties. NRG, reportnr CORA 04.
Orlic, B. & Wildenborg, A.F.B., 2001. Simulation of glacially-driven hydro-mechanical processes for safety assessment of geological disposal sites. Annual Conference of the Int. Assoc. of Mathematical Geology (IAMG), Session M. CD-ROM. Cancun.
Sauter, F.J., Leijnse, A. & Beusen, A.H.W., 1993. METROPOL, User’s guide. National Institute of Public Health and Environmental Protection, Bilthoven, RIVM Report 725205003.
Van Weert, F.H.A., Van Gijssel, K., Leijnse, A. & Boulton, G.S., 1997. The effects of the Pleistocene glaciations on the geo-hydrological system of Northwest Europe. Journal of Hydrology, 195: 137159.
Wildenborg, A.F.B., Orlic, B., de Lange, G., de Leeuw, C.S., Zijl, W. Van Weert, F. Veling, E.J.M., de Cock, S., Thimus, J.F., Lehnen-de Rooij, C. & den Haan, E.J., 2000. Transport of Radio-nuclides disposed of in Clay of Tertiary Origin (TRACTOR). TNO-report NITG 00–223-B. Netherlands Institute of Applied GeoscienceTNO -National Geological Survey.

Keywords

Radionuclide transport in clay during climate change

  • A.F.B. Wildenborg (a1), B. Orlic (a1), J.F. Thimus (a2), G. de Lange (a1), S. de Cock (a2), C.S. de Leeuw (a1) (a3) and E.J.M. Veling (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed