Skip to main content Accessibility help
×
Home

Mosasaur ascending: the phytogeny of bends

  • B.M. Rothschild (a1) (a2) (a3) and L.D. Martin (a3)

Abstract

Recognition of decompression syndrome-related pathology (in the form of avascular necrosis) reveals diving behaviour in mosasaurs. Macroscopic and radiologic examination was performed to identify linear bone death characteristic of avascular necrosis in vertebrae from the major North American and European collections. This survey of mosasaurs extends throughout most of their geographic and stratigraphic range and includes examples across their diversity.

Avascular necrosis was invariably present in Platecarpus coryphaeus and P. ictericus, Tylosaurus proriger, Mosasaurus lemonnieri and M. conodon, Plioplatecarpus houzeaui and Pl. primaevus, Prognathodon giganteus, Hainosaurus bernardi and an as yet unnamed Antarctic mosasaur. The frequency of occurrence in a given genus was independent of geography, present equally in European and North American and in the Niobara and Selma chalks. It was invariably absent from Clidastes propython and C. liodontus, Ectenosaurus, Halisaurus and Kolposaurus.

The bone pathology, avascular necrosis, has a characteristic distribution in seven genera and thirteen species of mosasaurs and is absent in five genera and seven species. It segregated according to diving habits, uniformly present in supposed deep divers and uniformly absent in the shallow-habitat group.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mosasaur ascending: the phytogeny of bends
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mosasaur ascending: the phytogeny of bends
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mosasaur ascending: the phytogeny of bends
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author. Email: bmr@neoucom.edu

References

Hide All
Bell, G., 1997. A Phylogenetic Revision of North American and Adriatic Mosasauroidea. In: Callaway, J.M., & Nicholls, E.L. (eds): Ancient Marine Reptiles. Academic Press (New York): 293–327.
Berkson, H., 1967. Physiological adjustments to deep diving in the Pacific green turtle (Chelonia mydas agassizii). Comparative Biochemistry and Physiology 21: 507–524.
Buchbaum, R. 1948. Animals without backbones. University of Chicago Press (Chicago, Illinois): 405 pp.
Carroll., R.L., 1988. Vertebrate Paleontology and Evolution. W.H. Freeman and Co. (New York): 698 pp.
Everhart, M.J., 1999. Evidence of feeding on mosasaurs by the Late Cretaceous lamniform shark, Cretoxyrhina mantelli. Journal of Vertebrate Paleontology 17 (Suppl. to 3): 43A44A.
Everhart, M.J., Everhart, P.A. & Shimada, K., 1995. New specimen of shark bitten mosasaur vertebrae from the Niobara Chalk (Upper Cetaceous) in Western Kansas. Transactions of the Kansas Academy of Sciences 14: 19.
Feldmann, J.L., Menkes, C.J., Amor, B., Chevrot, A. & Delbarre, F., 1981. L’ostéonecrose vertebrale de l’adulte. Revue du Rhumatisme et des Maladies Osteo-Articulaires 48: 773–780.
Holmes, R., 1996. Plioplatecarpus primaevus (Mosasauridae) from the Bearpaw Formation (Campanian, Upper Cretaceous) of the North American Western Interior seaway. Journal of Vertebrate Paleontology 16: 673–687.
Holmes, R., Caldwell, M.W. & Cumbaa, S.L., 1999. A new specimen of Plioplatecarpus (Mosasauridae) from the lower Maastrichtian of Alberta: Comments on allometry, functional morphology and paleoecology. Canadian Journal of Earth Sciences 36: 363–369.
Kooyman, G.I., Schroeder, J.P., Greene, D.G. & Smith, V.A., 1973. Gas exchange in penguins during simulated dives to 30 and 68 meters. American Journal of Physiology 225: 1467–1471.
Maldague, B.E., Noel, H.M. & Malghem, J.J., 1978. The intravertebral cleft: A sign of ischemie vertebral collapse. Radiology 129: 23–29.
Martin, J.E. & Bjork, P.R., 1987. Gastric residues associated with a mosasaur from the Late Cretaceous (Campanian) Pierre Shale in South Dakota. Dakoterra 3: 68–72.
Motani, R. & Rothschild, B.M., 1999. Large eyeballs in diving ichthyosaurs. Nature 402: 747.
Pauley, P., 1965. Decompression sickness following repeated breath-hold dives. Journal of Applied Physiology 20: 1028–1031.
Ratcliffe, J.F., 1985. Anatomic basis for the pathogenesis and radiologie features of vertebral osteomyelitis and its differentiation from childhood discitis: A microarteriographic investigation. Acta Radiologica Diagnostica 26: 137–143.
Resnick, D., 2002. Diagnosis of Bone and Joint Disorders. Philadelphia. Saunders (Philadelphia): 4944 pp.
Resnick, D., Niwayama, G., Guerra, J. Jr., Vint, V. & Usselman, J., 1981. Spinal vacuum phenomena: Anatomical study and review. Radiology 139: 241–248.
Rothschild, B.M., 1982. Rheumatology: A Primary Care Approach. Yorke Medical Press (New York): 416 pp.
Rothschild, B.M., 1987. Decompression syndrome in fossil marine turtles. Annals of the Carnegie Museum 56: 253–258.
Rothschild, B.M. & Martin, L.D., 1987. Avascular necrosis: Occurrence in Cretaceous mosasaurs. Science 236: 75–77.
Rothschild, B.M. & Martin, L.D., 1993. Paleopathology: Disease in the Fossil Record. CRC Press (London): 386 pp.
Rothschild, B.M., Martin, L.D. & Schulp, A.S., 2005. Sharks eating mosasaurs, dead or alive? In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 335–340.
Rothschild, B.M. & Storrs, G.W., 2003. Decompression syndrome in plesiosaurs (Sauropterygia: Reptilia). Journal of Vertebrate Paleontology 23: 324–328.
Sheldon, M.A., 1997. Ecological implications of mosasaur bone microstructure. In: Callaway, J.M., & Nicholls, E.L. (eds): Ancient Marine Reptiles. Academic Press (San Diego): 333–354.
Stewart, J.D. & Carpenter, K., 1990. Examples of vertebrate prédation on cephalopods in the late Cretaceous of the Western Interior. Evolutionary Paleobiology of Behavior and Coevolution 1: 203–207.
Strauss, M.B., 1970. Physiological aspects of mammalian breath-hold diving: A review. Aerospace Medicine 41: 1362–1381.
Strauss, M.B. & Samson, R.L., 1986. Decompression syndrome: An update. Physician and Sports Medicine 14: 1–9.
Vaughn, P.P. & Dawson, M.R., 1956. On the occurrence of calcified tympanic membranes in the mosasaur, Platecarpus. Transactions of the Kansas Academy of Sciences 59: 383–384.

Keywords

Mosasaur ascending: the phytogeny of bends

  • B.M. Rothschild (a1) (a2) (a3) and L.D. Martin (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed