Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-26T05:10:07.576Z Has data issue: false hasContentIssue false

Magnetostratigraphy and rock magnetism of the Boom Clay (Rupelian stratotype) in Belgium

Published online by Cambridge University Press:  01 April 2016

D. Lagrou*
Affiliation:
Historische Geologie, KU Leuven, Redingenstraat 16, 3000 Leuven, Belgium
N. Vandenberghe
Affiliation:
Historische Geologie, KU Leuven, Redingenstraat 16, 3000 Leuven, Belgium
S. Van Simaeys
Affiliation:
Historische Geologie, KU Leuven, Redingenstraat 16, 3000 Leuven, Belgium
J. Hus
Affiliation:
Centre de Physique du Globe de l’IRM, 5670 Dourbes, Belgium
*
*Corresponding author: D. Lagrou, presently at the Flemish Institute for Technological Research (Vito), Boeretang 200, B-2400 Mol, Belgium. E-mail:david.lagrou@vito.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents the results of a detailed rock magnetic and magnetostratigraphic study of the Lower Oligocene Rupelian unit-stratotype. Notwithstanding the relatively low intensity of the natural remanent magnetisation and the diverse and often unstable behaviour during demagnetisation, close-spaced sampling and accurate polarity determinations allowed us to determine the magnetic polarity zonation. The recognition of the characteristic magnetic polarity and the correlation with the standard magnetobiochronologic time scale yields an accurate chronostratigraphic dating of the Boom Clay Formation. The boundary between the geomagnetic chrons C12n and C12r nearly coincides with the lithostratigraphic boundary between theTerhagen and Putte Members. Rock magnetic techniques point to magnetite and probably also iron sulphides as the main magnetic remanence carriers. These magnetic minerals could, however, not be identified with classical mineralogical techniques performed on magnetic extractions. The failure to detect them may be due to the low concentration of these minerals, the small grain size, and the close physical relation with pyrite.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Ali, J.R., King, C. & Hailwood, E.A., 1993. Magnetostratigraphic calibration of early Eocene depositional sequences in the southern North sea basin. In: Hailwood, E.A. & Kidd, R.B. (eds): High Resolution Stratigraphy, Geological Society London Special Publication 70 (London): 99–125.Google Scholar
Berggren, W.A., Kent, D.V., Swisher, C.C. III, & Aubry, M.-P., 1995. A revised Cenozoic Geochronology and Chronostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M-P. & Hardenbol, J. (eds): Geochronology, Time Scales and Global Stratigraphic Correlation, Society for Sedimentary Geology (SEPM), Special Publication 54: 129–212.Google Scholar
Berner, R.A., 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta 48: 605–615.CrossRefGoogle Scholar
Blow, W.H., 1979. The Cainozoic Globigerinida (3 volumes). Brill: 1412 pp.CrossRefGoogle Scholar
Cande, S.C. & Kent, D.V., 1992. A new geomagnetic polarity time scale of the Late Cretaceous and Cenozoic. Journal of Geophysical Research 97: 13917–13951.CrossRefGoogle Scholar
De Craen, M., Swennen, R. & Keppens, E., 1999. Petrography and geochemistry of septarian carbonate concretions from the Boom Clay Formation (Oligocene, Belgium). Geologie en Mijnbouw 77: 63–76.Google Scholar
Dekkers, M.J., 1989. Magnetic properties of natural pyrrhotite part II: High- and low-temperature behaviour of Jrs and TRM as function of grain size. Physics of the Earth and Planetary Interiors 57: 266–283.CrossRefGoogle Scholar
Dekkers, M.J., 1997. Environmental magnetism: an introduction. Geologie en Mijnbouw 76: 163–182.Google Scholar
Florindo, F. & Sagnotti, L., 1995. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy). Geophysical Journal International 123: 340–354.CrossRefGoogle Scholar
Hailwood, E.A. & Ting, F., 1990. Preliminary magnetostratigraphic investigations of the Oligocene Boom Clay (Belgium) and Bovey Beds (UK). Tertiary Research 11: 209.Google Scholar
Haq, B.U., Hardenbol, J. & Vail, P.R., 1987. Chronology of fluctuating sea level since theTriassic. Science 235: 1156–1167.CrossRefGoogle Scholar
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.C. & Vail, P., 1998. Mesozoic and Cenozoic sequence chrono-stratigraphic framework of European Basins. In: Graciansky, P.C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, Society for Sedimentary Geology (SEPM), Special Publication 60: 3–13.Google Scholar
Hartl, P., Tauxe, L. & Constable, C., 1993. Early Oligocene geomagnetic field behaviour from deep sea drilling Project site 522. Journal of Geophysical Research 98: 19649–19665.CrossRefGoogle Scholar
Hooyberghs, H., 1983. Contributions to the study of planktonic Foraminifera in the Belgian Tertiary. Aardkundige Mededelingen (Leuven University Press) 2: 131pp.Google Scholar
Hooyberghs, H.J.F., 1992. Planktonic foraminiferal biostratigraphy in the Boom Formation at Kruibeke and Antwerp (Northern Belgium). In: Hooyberghs, H., Vercauteren, T., De Meuter, F. & Symons, F. (eds): Foraminiferal studies in the Boom Formation. Professional Paper, Belgian Geological Survey (Brussels) 258: 1–10.Google Scholar
Laenen, B. & De Craen, M., 2004. Eogenetic siderite as an indicator for fluctuations in sedimentation rate in the Oligocene Boom Clay Formation (Belgium). Sedimentary Geology 163: 165–174.CrossRefGoogle Scholar
Lagrou, D., 1992. Magnetostratigrafie van de Boomse Klei in het stratotype gebied. Master thesis, KU Leuven, Leuven: 92 pp. (in Dutch).Google Scholar
Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17: 159–162.CrossRefGoogle Scholar
Lowrie, W. & Lanci, L., 1994. Magnetostratigraphy of Eocene-Oligocene boundary sections in Italy: No evidence for short subchrons within chrons C12R and C13R. Earth and Planetary Science Letters 126: 247–258.CrossRefGoogle Scholar
Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proceedings of the second planktonic Conference in Roma 1970. Edizioni Tecnoscienza, Roma, 2: 739–785.Google Scholar
Mary, C., Iaccarino, S., Courtillot, V., Besse, J. & Aissaoui, D.M., 1993. Magnetostratigraphy of Pliocene sediments from the Stirone river (Po Valley). Geophysical Journal International 112: 359–380.CrossRefGoogle Scholar
Mullender, T.A.T., Van Velzen, A.J. & Dekkers, M.J., 1993. Continuous drift correction and separate identification of ferrimagnetic and paramagnetic contributions in thermomagnetic runs. Geophysical Journal International 114: 663–672.CrossRefGoogle Scholar
Poore, R.Z., Tauxe, L., Percival, S.F. Jr. & LaBrecque, J.L., 1982. Late Eocene-Oligocene magnetostratigraphy and biostratigraphy at South Atlantic DSDP site 522. Geology 10: 508–511.2.0.CO;2>CrossRefGoogle Scholar
Prince, R.A., Heath, G.R. & Kominz, M., 1980. Paleomagnetic studies of Central North Pacific sediment cores: Stratigraphy, sedimentation rates, and the origin of magnetic instability. Geological Society of America Bulletin 91: 1789–1835.Google Scholar
Reynolds, R.L., Tuttle, M.L., Rice, C.A., Fishman, N.S., Karachewski, J.A. & Sherman, D.M., 1994. Magnetization and geochemistry of greigite-bearing Cretaceous strata, North Slope Basin, Alaska. American Journal of Science 294: 485–528.CrossRefGoogle Scholar
Roberts, A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters 134: 227–236.CrossRefGoogle Scholar
Roberts, A.P. & Turner, G.M., 1993. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters 115: 57–273.CrossRefGoogle Scholar
Snowball, I.F., 1994. Bacterial magnetite and the magnetic properties of sediments in a Swedish lake. Earth Planetary Science Letters 126: 129–142.CrossRefGoogle Scholar
Snowball, I.F. & Thompson, R., 1990. A stable chemical remanence in Holocene sediments. Journal of Geophysical Research 95: 4471–4479.CrossRefGoogle Scholar
Steurbaut, E., 1986. Late Middle Eocene to Middle Oligocene Calcareous nannoplankton from the Kallo well, some boreholes and exposures in Belgium and a description of the Ruisbroek Sand Member. Mededelingen Werkgroep Tertiair en Kwartair Geologie 23(2): 49–83.Google Scholar
Steurbaut, E., 1992. Integrated stratigraphic analysis of Lower Rupelian Deposits (Oligocene) in the Belgian basin. Annales de la Société Géologique de Belgique 115: 287–306.Google Scholar
Stover, L.E. & Hardenbol, J., 1994. Dinoflagellates and depositional sequences in the Lower Oligocene (Rupelian) Boom Clay Formation, Belgium. Bulletin van de Belgische Vereniging voor Geologie 102(1-2): 5–77.Google Scholar
Thompson, R. & Cameron, T.D.J., 1995. Paleomagnetic study of Cenozoic sediments in North Sea boreholes: an example of a magnetostratigraphic conundrum in a hydrocarbon producing area. In: Turner, P. & Turner, A. (eds): Palaeomagnetic Applications in Hydrocarbon Exploration and Production. Geological Society London, Special Publication 98: 223–236.Google Scholar
Vandenberghe, N., 1978. Sedimentology of the Boom Clay (Rupelian) in Belgium. Verhandelingen Koninklijke Academie Wetenschappen Letteren en Schone Kunsten van België, Klasse Wetenschappen (Brussel) 147: 137 pp.Google Scholar
Vandenberghe, N. & Laga, P., 1986. The septaria of the Boom Clay (Rupelian) in its type area in Belgium. Aardkundige Mededelingen (Leuven University Press) 3: 229–238.Google Scholar
Vandenberghe, N. & Van Echelpoel, E., 1987. Field guide to the Rupelian stratotype. Bulletin van de Belgische Vereniging voor Geologie 96: 325–337.Google Scholar
Vandenberghe, N., Laenen, B., Van Echelpoel, E. & Lagrou, D., 1997. Cyclostratigraphy and climatic eustasy. Example of the Rupelian stratotype. Comptes Rendus de l’Académie des Sciences (Paris), Sciences de la Terre et des Planètes 325: 305–315.Google Scholar
Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J. & Vail, P., 1998. Tertiary Sequence Stratigraphy at the Southern Border of the North Sea Basin in Belgium. In: de Graciansky, P.C., Hardenbol, J., Jaquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society for Sedimentary Geology (SEPM), Special Publication 60: 119–154.Google Scholar
Van Hoof, A.A.M. & Langereis, C.G., 1991. Reversal records in marine marls and delayed acquisition of remanent magnetization. Nature 351: 223–225.CrossRefGoogle Scholar
Van Simaeys, S., De Man, E., Vandenberghe, N., Brinkhuis, H., Steurbaut, E., 2004. Stratigraphic and palaeoenvironmental analysis of the Rupelian-Chattian transition in the type region: evidence from dinoflagellate cysts, foraminifera and calcareous nannofossils. Palaeogeography, Palaeoclimatology, Palaeoecology 208: 31–58.CrossRefGoogle Scholar
Van Velzen, A. J., Dekkers, M.J. & Zijderveld, J.D.A., 1993. Magnetic iron-nickel sulphides in the Pliocene and Pleistocene marine marls from theVrica section (Calabria, Italy). Earth and Planetary Science Letters 115: 43–55.CrossRefGoogle Scholar
Wei, W. & Wise, S.W., 1989. Discoaster praebifax n.sp. - A possible ancestor of Discoaster bifax Bukry (Coccolithophoridae). Journal of Paleontology 63: 10–14.CrossRefGoogle Scholar
Williams, G.L., Brinkhuis, H., Pearce, M.A., Fensome, R.A., Weegink, J.W., 2004. Southern Ocean and global dinoflagellate cyst events compared; Index events for the Late Cretaceous-Neogene. In: Exon, N.F., Kennett, J.P. & Malone, M.J. (eds), Proceedings of the Ocean Drilling Program, Scientific Results ODP Leg 189: 1–98 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/189_SR/VOLUME/ CHAPTERS/107.PDF>.Google Scholar
Zijderveld, J.D.A., Hilgen, F.J., Langereis, C.G., Verhallen, P.J.J.M. & Zachariasse, W.J., 1991. Integrated magnetostratigraphy and biostratigraphy of the upper Pliocene-lower Pleistocene from the Monte Singa and Crotone areas in Calabria, Italy. Earth and Planetary Science Letters 107: 697–714.CrossRefGoogle Scholar