Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T04:29:56.164Z Has data issue: false hasContentIssue false

Late Oligocene Warming Event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies

Published online by Cambridge University Press:  01 April 2016

E. De Man*
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
S. Van Simaeys
Affiliation:
Historical Geology, University of Leuven, Redingenstraat 16, B-3000 Leuven, Belgium
*
E-mail: Ellen.deman@naturalsciences.be(corresponding author)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The investigation of foraminiferal assemblages from a series of Oligocene borehole sections allowed paleoenvironment and paleoclimate reconstructions for the Rupelian and Chattian (Lower and Upper Oligocene) Stages in their type region, the southern North Sea Basin. A striking feature coinciding with the Rupelian-Chattian (R-C) unconformity is the major change in paleotemperature and paleobathymetry. The shallow marine to restricted marine subtropical fauna at the base of the Chattian is in strong contrast with the deeper marine and cooler upper Rupelian assemblages. This study suggests that the early Chattian transgression is genetically related to a widespread major warming pulse, known as the Late Oligocene Warming Event.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Anderson, A.J., Hinch, W., Martini, E., Müller, C. & Ritzkowski, S., 1971. Chattian. Giornale di Geologia 37(2): 69–79.Google Scholar
Antunes, M. & Cahuzac, B., 1999. Crocodilian faunal renewal in the Upper Oligocene of Western Europe. Comptes rendus de l’académie des sciences serie II Fascicule A-Sciences de la terre et des planètes 328(1): 67–72.Google Scholar
Astruc, J.G. Hugueney, M., Escarguel, G., Legendre, S., Rage, J.-C., Simon-Coinçon, R., Sudre, J. & Sigé, B., 2003. Puycelci, a new vertebrate-bearing locality in the Aquitaine molassic basin. Density and continuity of the Paleogene biochronologic record in the Quercy and peripheral basins area. Geobios 36(6): 629–648.Google Scholar
Attendorn, , 1995. δ13C und δ18O-Isotopenverhaltnisse von Pectiniden des Chatt der Niederrheinischen Bucht, NW-Deutschland. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 198(1/2): 223–232.CrossRefGoogle Scholar
Beckmann, J.P., 1953. Die Foraminiferen der Oceanic Formation (Eocaen-Oligocaen) von Barbados, Kl. Antillen. Eclogae Geologicae Helvetiae 46(2): 301–412.Google Scholar
Berger, J.-P., 1992. Correlative chart of the European Oligocene and Miocene: Application to the Swiss Molasse Basin. Eclogae Geologicae Helvetiae 85(3): 573–609.Google Scholar
Berger, J.-P., 1998. ‘Rochette’ (Upper Oligocene, Swiss Molasse): a strange example of a fossil assemblage. Review of Palaeobotany and Palynology 101: 95–110.CrossRefGoogle Scholar
Bohaty, S. & Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology, 31(11): 1017–1020.Google Scholar
Bruch, A.A. & Mosbrugger, V., 2002. Palaeoclimate versus vegetation reconstruction - palynological investigations on the Oligocene sequence of the Sava Basin, Slovenia. Review of Palaeobotany and Palynology 122: 117–141.CrossRefGoogle Scholar
Buchardt, B., 1978. Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area. Nature 275: 121–123.CrossRefGoogle Scholar
Cahuzac, B., Turpin, L. & Bonhomme, P., 1997. Sr isotope record in the area of the Lower Miocene historical stratotypes of the Aquitaine Basin (France). In: Montanari, A., Odin, G.S., Coccioni, R. (eds), Miocene stratigraphy: an integrated approach. Developments in Paleontology and Stratigraphy. Elsevier (Amsterdam): 33–56.Google Scholar
Corliss, B.H., 1981. Deep-sea benthonic foraminiferal faunal turnover near the Eocene/Oligocene boundary. Marine Micropaleontology 6: 367–384.CrossRefGoogle Scholar
De Man, E., Van Simaeys, S., De Meuter, F., King, C. & Steurbaut, E., 2004. Oligocene benthic foraminiferal zonation for the southern North Sea Basin. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen - Aardwetenschappen 74 supplement: 177–195.Google Scholar
De Man, E., Vandenberghe, N., Van Simaeys, S. & Ivany, L., in preperation. δ18O record of the Rupelian-Chattian boundary in NE Belgium.Google Scholar
Doppert, J.W.C. & Neele, N.G., 1983. Biostratigraphy of marine Paleogene deposits in the Netherlands and adjacent areas. Mededelingen Rijks Geologische Dienst 37(2): 4–79.Google Scholar
Ellermann, C., 1958. Die mikrofaunistische Gliederung des Oligozäns im Schacht Kapellen bei Moers (Niederrhein). Fortschritte Geologie von Rheinland und Westfalen 1: 205–214.Google Scholar
Feyling-Hanssen, R.W. & Ulleberg, K., 1984. A Tertiary-Quaternary section at Sarsbukta, Spitsbergen, Svalbard, and its foraminifera. Polar Research 2 n.s.: 77–106.Google Scholar
Grimm, K.I. & Steurbaut, E., 2001. Foraminiferal biofacies analysis of the Boom Clay in the Rupel area (Oligocene, Belgium) and correlation with the Mainz Basin (Germany). In: Vandenberghe, N. (ed), Contributions to the Paleogene and Neogene Stratigraphy of the North Sea Basin. Aardkundige Mededelingen 11. Leuven University Press, Leuven: 9–20.Google Scholar
Haake, F.-W., 1962. Untersuchungen an der Foraminiferen-Fauna im Wattengebiet zwischen Langeoog und dem Festland. Meyniana 12: 25–64.Google Scholar
Hofker, J., 1977. The foraminifera of dutch tidal flat and salt marches. Netherlands Journal of Sea Research 11(3/4) : 223–296.Google Scholar
Hooyberghs, H., Vercauteren, T., De Meuter, F. & Symons, F., 1992. Foraminiferal studies in the Boom Formation. Ministerie van Economische Zaken, Belgische Geologische Dienst, Professional paper 8(258): 1–46.Google Scholar
Indans, J., 1958. Mikrofaunistische Korrelationen im marinen Tertiär der Niederrheinischen Bucht. Fortschritte Geologie von Rheinland und Westfalen 1: 223–238.Google Scholar
Indans, J., 1965. Nachweis des Asterigerinen-Horizontes im Oberoligozän des Dobergs bei Bünde/Westfalen. Neues Jahrbuch Geologie und Paläontologie, Abhandlungen 123(1): 20–24.Google Scholar
Ivany, L.C., Nesbitt, E.A. & Prothero, D.R., 2003. The marine Eocene-Oligocene transition: a synthesis. In: Prothero, D.R., Ivany, L.C. & Nesbitt, E.A. (eds), From Greenhouse to Icehouse. The marine Eocene-Oligocene transition. Columbia University Press, New York: 522–534.Google Scholar
Jarke, J., 1961. Die Beziehungen zwischen hydrographischen Verhältnissen, Faziesentwicklung und Foraminiferenverbreitung in der heutigen Nordsee als Vorbild für die Verhältnisse während der Miocän-Zeit. Meyniana 10: 21–36.Google Scholar
King, C., 1983. Cainozoic micropalaeontological biostratigraphy of the North Sea. Report Institute of Geological Sciences 82(7): 1–40.Google Scholar
King, C., 1989. Cenozoic of the Norh Sea. In: Jenkins, D.G. & Murray, J.W. (eds), Stratigraphical atlas of fossil foraminifera. British micropalaeontological society series. Ellis Horwood Limited (Chichester): 418–489.Google Scholar
Kohnen, O., 1995. Paläotemperaturen aus dem Oberoligozän des Norddeutschen Beckens. Neues Jahrbuch für geologie und Paläontologie - Abhandelungen 198(1/2): 233–241.Google Scholar
Langer, M. & Hottinger, L., 2000. Biogeography of selected larger foraminifera. Micropaleontology 46(1): 105–126.Google Scholar
Lauriat-Rage, A., Brébion, Ph., Cahuzac, B., Chaix, Ch., Ducasse, O., Ginsburg, L., Janin, M.-C., Lozouet, P., Margerel, J.-P., Nascimento, A., Pais, J., Poignant, A., Pouyet, S. & Roman, J., 1993. Palaeontological data about the climatic trends from Chattian to present along the Northeastern Atlantic frontage. Ciencias da Terra, Universidade Nova Lisboa (1st Congress R.C.A.N.S., Lisboa, 1992) 12: 167–179.Google Scholar
Lommerzheim, A., 1991. Mikropaläontologische Indikatoren für Paläoklima und Paläobathymetrie in der borealen Oberkreide: Bohrung Metelen 1001. Facies 24: 183–254.Google Scholar
Miller, K.G., Fairbanks, R.G. & Mountain, G.S., 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2(1): 1–19.CrossRefGoogle Scholar
Miller, K.G., Feigenson, M.D., Wright, J.D. & Clement, B.M., 1991. Miocene isotope reference section, Deep Sea Drilling Project site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6(1): 33–52.Google Scholar
Miller, K.G. Mountain, G.S., Browning, J.V., Kominz, M., Sugerman, P.J., Christie-Blick, N., Katz, M.E. & Wright, J.D., 1998. Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Reviews of Geophysics 36(4): 569–601.Google Scholar
Mors, T., 1995. Die Sedimentationsgeschichte der Fossillagerstätte Rott und ihre Alterseinstufung anhand neuer Säugetierfunde (Oberoligozän, Rheinland). Courier des Forschungs-Instituts Senckenberg 187: 101–115.Google Scholar
Mors, T., 1996. Die Säugetiere der oberoligozänen Fossillagerstätte Rott bei Bonn (Rheinland). Decheniana 149: 205–232.Google Scholar
Mors, T., 2002. Biostratigraphy and paleoecology of continental Tertiary vertebrate faunas in the Lower Rhine Embayment (NW-Germany). Netherlands Journal of Geosciences 81(2): 177–183.Google Scholar
Murray, J.W., 1973. Distribution and ecology of living benthic foraminifera. Heinemann, London, 274 pp.Google Scholar
Murray, J.W., 1976. A method of determining proximity of marginal seas to an ocean. Marine Micropaleontology, 22: 103–119.Google Scholar
Murray, J.W., 1984. Benthic Foraminifera: some relationships between ecological observations and palaeoecological interpretations, Benthos ’83; 2nd Int. Symp. Benthic Foraminifera, Pau, April 1983: 465–469.Google Scholar
Murray, J.W., 1991. Ecology and Palaeoecology of benthic foraminifera. Longman Scientific and Technical, New York, 341 pp.Google Scholar
Murray, J.W., 2002. Introduction to benthic foraminifera. In: Haslett, S.K. (ed) Quaternary environmental micropalaeontology. Arnold, London: 5–13.Google Scholar
Ramos, E., Cabrera, L., Hagemann, H.W., Pickel, W. & Zamarreño, I., 2001. Palaeogene lacustrine record in Mallorca (NW Mediterranean, Spain): depositional, palaeogeographic and palaeoclimatic implications for the ancient southeastern Iberian margin. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 1–37.Google Scholar
Schwarzbach, M., 1952. Aus der Klimageschichte des Rheinlandes. Geologische Rundschau 40: 128–136.Google Scholar
Scotese, C.P. & Golanka, J., 1992. Paleogeographic atlas, PALEOMAP progress report 20–0692. Arlington, University of Texas: 34 pp.Google Scholar
Sissingh, W., 2003. Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology 196: 229–263.Google Scholar
Storch, G., Engesser, B. & Wuttke, M., 1996. Oldest fossil record of gliding in rodents. Nature 379: 439–441.CrossRefGoogle Scholar
Strauch, F., 1968. Determination of Cenozoic sea-temperatures using Hiatella arctica (Linné). Palaeogeography, Palaeoclimatology, Palaeoecology 5: 213–233.Google Scholar
Uhlig, U., Reichenbacher, B. & Bassler, B., 2000. Mammals, fish otoliths and charophytes from the Lower Cyrena Beds (Oligocene) of the folded molasse of Bavaria (Murnau syncline). Eclogae Geologicae Helvetiae 93(3): 503–516.Google Scholar
Ulleberg, K., 1987. Foraminiferal zonation of the Danish Oligocene sediments. Bulletin geological Society Denmark 36: 191–202.Google Scholar
Utescher, T., Mosbrugger, V. & Ashraf, A.R., 2000. Terrestrial Climate Evolution in Northwest Germany Over the Last 25 Million years. Palaios 15: 430–449.Google Scholar
Vandenberghe, N., Hager, H., Van Den Bosch, M., Verstraelen, A., Leroi, S., Steurbaut, E., Prüfert, J. & Laga, P., 2001. Stratigraphic Correlation by calibrated well logs in the Rupel Group between North Belgium, the Lower-Rhine area in Germany and Southern Limburg and the Achterhoek in The Netherlands with list of figures and in annex correlation plates. In: Vandenberghe, N. (ed), Contributions to the Paleogene and Neogene Stratigraphy of the North Sea Basin. Aardkundige Mededelingen 11. Leuven University Press, Leuven: 69–84.Google Scholar
Van Simaeys, S., 2004. The Rupelian-Chattian boundary in the North Sea Basin and its calibration to the international time-scale. Netherlands Journal of Geosciences / Geologie en Mijnbouw 83(3): 241–248.Google Scholar
Van Simaeys, S., De Man, E., Vandenberghe, N., Brinkhuis, H. & Steurbaut, E., 2004. Stratigraphic and palaeoenvironmental analysis of the Rupelian-Chattian transition in the type region: evidence from dinoflagellate cysts, foraminifera and calcareous nannofossils. Palaeogeography, Palaeoclimatology, Palaeoecology 208: 31–58.Google Scholar
Van Simaeys, S., Brinkhuis, H., Pross, J., Williams, G. & Zachos, J., submitted. Arctic dinoflagellate migration marks the Mid Oligocene Climatic Minimum. Geology.Google Scholar
Van Simaeys, S., Munsterman, D. & Brinkhuis, H., in press. Oligocene dinoflagellate cyst biostratigraphy of the southern North Sea Basin. Review Palaeobotany and Palynology.Google Scholar
Von Koeningswald, W. & Mosbrugger, V., 1989. Rott im Überblick. In: Von Koeningswald, W. (ed), Die Fossillagerstätte Rott bei Hennef im Siebengebirge. Rheinlandia, Siegburg: 81–82.Google Scholar
Wong, T.E., 1976. Tertiary stratigraphy and micropaleontology of the Guiana Basin. Geologie en Mijnbouw Dienst Suriname, Mededeling 25: 13–107.Google Scholar
Wood, K.C., Miller, K.G. & Lohmann, G.P., 1985. Middle Eocene to Oligocene benthic foraminifera from the Oceanic Formation, Barbados. Micropaleontology 31(2): 181–197.Google Scholar
Zachos, J.C., Lohmann, K.C., Walker, J.D.G. & Wise, S.W., 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. Journal of Geology 101: 191–213.Google Scholar
Zachos, J.C., Opdyke, B.N., Quinn, T.M., Jones, C.E. & Halliday, A.N., 1999. Early Cenozoic glaciation, Antarctic weathering, and seawater 87Sr/86Sr: is there a link? Chemical Geology 161 : 165–180.Google Scholar
Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.Google Scholar
Zachos, J.C., Quinn, T.M. & Salamy, S., 1996. High-resolution (104years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11(3): 251–266.CrossRefGoogle Scholar
Zachos, J.C., Stott, L.D. & Lohmann, K.C., 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9: 353–387.CrossRefGoogle Scholar
Ziegler, P.A., 1990. Geological atlas of western and central Europe. Shell Internationale Petroleum Maatschappij B.V. (Den Haag), 239 pp.Google Scholar