Skip to main content Accessibility help
×
Home

Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola

  • C. Strganac (a1) (a2), L.L. Jacobs (a1), M.J. Polcyn (a1), O. Mateus (a3) (a4), T.S. Myers (a1), J. Salminen (a5), S.R. May (a1), R. Araújo (a1) (a4), K.M. Ferguson (a1), A. Olímpio Gonçalves (a6), M.L. Morais (a6), A.S. Schulp (a7) (a8) (a9) and T. da Silva Tavares (a6) (a10)...

Abstract

The Bench 19 Bonebed at Bentiaba, Angola, is a unique concentration of marine vertebrates preserving six species of mosasaurs in sediments best correlated by magnetostratigraphy to chron C32n.1n between 71.4 and 71.64 Ma. The bonebed formed at a paleolatitude near 24°S, with an Atlantic width at that latitude approximating 2700 km, roughly half that of the current width. The locality lies on an uncharacteristically narrow continental shelf near transform faults that controlled the coastal outline of Africa in the formation of the South Atlantic Ocean. Biostratigraphic change through the Bentiaba section indicates that the accumulation occurred in an ecological time dimension within the 240 ky bin delimited by chron 32n.1n. The fauna occurs in a 10 m sand unit in the Mocuio Formation with bones and partial skeletons concentrated in, but not limited to, the basal 1–2 m. The sediment entombing the fossils is an immature feldspathic sand shown by detrital zircon ages to be derived from nearby granitic shield rocks. Specimens do not appear to have a strong preferred orientation and they are not concentrated in a strand line. Stable oxygen isotope analysis of associated bivalve shells indicates a water temperature of 18.5°C. The bonebed is clearly mixed with scattered dinosaur and pterosaur elements in a marine assemblage. Gut contents, scavenging marks and associated shed shark teeth in the Bench 19 Fauna indicate biological association and attrition due to feeding activities. The ecological diversity of mosasaur species is shown by tooth and body-size disparity and by δ13C analysis of tooth enamel, which indicate a variety of foraging areas and dietary niches. The Bench 19 Fauna was formed in arid latitudes along a coastal desert similar to that of modern Namibia on a narrow, tectonically controlled continental shelf, in shallow waters below wave base. The area was used as a foraging ground for diverse species, including molluscivorus Globidens phosphaticus, small species expected near the coast, abundant Prognathodon kianda, which fed on other mosasaurs at Bench 19, and species that may have been transient and opportunistic feeders in the area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Email: christopher.strganac@perotmuseum.org

References

Hide All
Adams, T.L., 2009. Deposition and taphonomy of the Hound Island Late Triassic vertebrate fauna: Fossil preservation within subaqueous gravity flows. Palaios 24: 603615.
Antunes, M.T. & Cappetta, H., 2002. Sélaciens du Crétacé (Albien-Maastrichtien) d’Angola. Palaeontographica 264: 85146.
Arambourg, C., 1952. Les vertébrés fossiles des gisements de phosphates (Maroc – Algérie – Tunisie). Notes et Mémoires du Service Géologique du Maroc 92: 1372.
Araújo, R., Polcyn, M.J., Schulp, A.S., Mateus, O. & Jacobs, L.L., submitted A. A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs. Netherlands Journal of Geosciences.
Araújo, R., Lindgren, J., Polcyn, M.J., Jacobs, L.L., Schulp, A.S. & Mateus, O., submitted B. New aristonectine elasmosaurid plesiosaur specimens from the Lower Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Netherlands Journal of Geosciences.
Bardet, N., 2012. Maastrichtian marine reptiles of the Mediterranean Tethys: a palaeobiogeographical approach. Bulletin de la Société Géologique de France 183(6): 573596.
Bardet, N. & Pereda Superbiola, X.P., 2002. Marine reptiles from the Late Cretaceous Phosphates of Jordan: palaeobiogeographical implications. Geodiversitas 24(4): 831839.
Bardet, N., Pereda Suberbiola, X., Jouve, S., Bourdon, E., Vincent, P., Houssaye, A., Rage, J-C., Jalil, N-E., Bouya, B. & Amaghzaz, M., 2010. Reptilian assemblages from the latest Cretaceous–Palaeogene phosphates of Morocco: from Arambourg to present time. Historical Biology 22(13): 186199.
Behrensmeyer, A.K., 1978. Taphonomic and ecologic information from bone weathering. Paleobiology 4: 150162.
Biasatti, D.M., 2004. Stable carbon isotopic profiles of sea turtle humeri: implications for ecology and physiology. Palaeogeography, Palaeoclimatology, Palaeoecology 206(3): 203216.
Brand, L.R., Esperante, R., Chadwick, A.V., Porras, O.P. & Alomía, M. 2004. Fossil whale preservation implies high diatom accumulation rate in the Miocene–Pliocene Pisco Formation of Peru. Geology 32: 165168.
Brand, L., Urbina, M., Chadwick, A., DeVries, T.J. & Esperante, R., 2011. A high resolution stratigraphic framework for the remarkable fossil cetacean assemblage of the Miocene/Pliocene Pisco Formation, Peru. Journal of South American Earth Sciences 31: 414425.
Brongersma-Sanders, M., 1948. The importance of upwelling water to vertebrate paleontology and oil geology: Verhandelingen der Koninklijke Nederlandsche Akademie van Wetenschappen te Amsterdam. Afdeeling Natuurkunde (Amsterdam) Noord-Hollandsche Uitgevers Maatschappij: 112 pp.
Brongersma-Sanders, M., 1957. Mass mortality in the sea. In: Hedgepeth, J.W. (ed.): Treatise on Marine Ecology and Paleoecology. Geological Society of America Memoire 167: 9411010.
Brongersma-Sanders, M., Stephan, K.M., Kwee, T.G. & DeBruin, M., 1980. Distribution of minor elements in cores from the southwest Africa shelf with notes on plankton and fish mortality. Marine Geology 37: 91132.
Calvert, S.E. & Price, N.B., 1983. Geochemistry of Namibian shelf sediments. In: Suess, E. & Thiede, J. (eds): Coastal Upwelling, Its Sediment Record, Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling. Plenum Press (New York): 337375.
Cicimurri, D.J. & Everhart, M.J., 2001. An elasmosaur with stomach contents and gastroliths from the Pierre Shale (Late Cretaceous) of Kansas. Transactions of the Kansas Academy of Science 104(34): 129143.
Clementz, M.T. & Koch, P.L., 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129: 461472.
Cury, P., Bakun, A., Crawford, R.J.M., Jarre, A., Quiñones, R.A., Shannon, L.J. & Verheye, H.M., 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in ‘wasp-waist’ ecosystems. ICES Journal of Marine Science 57: 603618.
Diester-Haas, L., Meyers, P.A. & Vidal, L., 2002. The late Miocene onset of high productivity in the Benguela Current upwelling system as part of a global pattern. Marine Geology 180: 87103.
Esperante, R., Brand, L., Chadwick, A. & Poma, O., 2002. Taphonomy of fossil whales in the diatomaceous sediments of the Miocene/Pliocene Pisco Formation, Peru. In: De Renzi, M., Alonzo, M., Belinchon, M., Penalver, E., Montoya, P. & Marquez-Aliaga, A. (eds): Current Topics on Taphonomy and Fossilization. International Conference Taphos 2002, 3rd Meeting on Taphonomy and Fossilization, Valencia, Spain: 337343.
Esperante, R., Brand, L., Nick, K.E., Poma, O. & Urbina, M., 2008. Exceptional occurrence of fossil baleen in shallow marine sediments of the Neogene Pisco Formation, southern Peru. Palaeogeography, Palaeoclimatology, Palaeoecology 257: 344360.
Fisher, R., 1953. Dispersion of a sphere. Proceedings of the Royal Society of London 217: 295305.
Gehrels, G.E., Valencia, V. & Pullen, A., 2006. Detrital zircon geochronology by Laser-Ablation Multicollector ICPMS at the Arizona LaserChron Center. In: Loszewski, T. & Huff, W. (eds): Geochronology: Emerging Opportunities, Paleontology Society Short Course: Paleontology Society Papers 11: 10 pp.
Gehrels, G.E., Valencia, V. & Ruiz, J., 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems 9: Q03017.
Goscombe, B., Gray, D., Armstrong, R., Foster, D.A. & Vogl, J., 2005. Event geochronology of the Pan-African Kaoko Belt, Namibia. Precambrian Research 140: 103.e1103.e41.
Gottfried, M.D., Bohaska, D.J. & Whitmore, F.C. Jr., 1994. Miocene cetaceans of the Chesapeake Group. In: Berta, A. & Deméré, T. (eds): Contributions in Marine Mammal Paleontology Honoring Frank C. Whitmore, Jr. Proceedings of the San Diego Society of Natural History 29: 229238.
Guiraud, M., Buta-Neto, A. & Quesne, D., 2010. Segmentation and differential post-rift uplift at the Angola margin as recorded by the transform-rifted Benguela and oblique-to-orthogonal-rifted Kwanza basins. Marine and Petroleum Geology 27(5): 10401068.
Handoh, I.C., Bigg, G.R., Jones, E.J.W. & Inoue, M., 1999. An ocean modelling study of the Cenomanian Atlantic: Equatorial paleo-upwelling, organic-rich sediments and the consequences for a connection between the proto-North and South Atlantic. Geophysical Research Letters 26: 223226.
Hanson, R.E., 2003. Proterozoic geochronology and tectonic evolution of southern Africa. In: Yoshida, M., Windley, B.E & Dasgupta, S. (eds): Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications 206: 427463.
Husson, D., Galbrun, B., Laskar, J., Hinnov, L.A., Thibault, N., Gardin, S. & Locklair, R.E., 2011. Astronomical calibration of the Maastrichtian (late Cretaceous). Earth and Planetary Science Letters 305(3): 328340.
Jacobs, L.L., Mateus, O., Polcyn, M.J., Schulp, A.S., Antunes, M.T., Morais, M.L. & Da Silva Tavares, T., 2006. The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Journal of the Paleontological Society of Korea 22: 91110.
Jacobs, L.L., Mateus, O., Polcyn, M.J., Schulp, A.S., Scotese, C.R., Goswami, A., Ferguson, K.M., Robbins, J.A., Vineyard, D.P. & Buta Neto, A., 2009. Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean. Bulletin de la Société Géologique de France 180(4): 333341.
Jacobs, L.L., Strganac, C. & Scotese, C.R., 2011. Plate motions, Gondwana dinosaurs, Noah’s Arks, Ghost Ships, and Beached Viking Funeral Ships. Anais da Academia Brasileira de Ciências 83(1): 322.
Jagt, J.W.M., 2005. Stratigraphic ranges of mosasaurs in Belgium and the Netherlands (Late Cretaceous) and cephalopod-based correlations with North America. Netherlands Journal of Geosciences 84(3): 283301.
Koch, P.L., 2007. Chapter 5: Isotopic study of the biology of modern and fossil vertebrates. In: Michener, M. & Lajtha, K. (eds): Stable isotopes in ecology and environmental science, 2nd edn. Blackwell Publishing (Malden): 99154.
Martin, J.E., 2007. A new species of the durophagus mosasaur Globidens (Squamata: Mosasauridae) from the Late Cretaceous Pierre Shale Group of central South Dakota, USA. In: Martin, J.E. & Parris, D.C. (eds): The Geology and Paleontology of the Late Cretaceous Marine Deposits of the Dakotas. Geological Society of America, Special Paper 427: 177-198.
Martin, J.E. & Fox, J.E., 2007. Stomach contents of Globidens, a shell-crushing mosasaur (Squamata), from the Late Cretaceous Pierre Shale, Big Bend area of the Missouri River, central South Dakota. In: Martin, J.E. & Parris, D.C. (eds): The Geology and Paleontology of the Late Cretaceous Marine Deposits of the Dakotas. Geological Society of America, Special Paper 427: 167176.
Mateus, O., Polcyn, M.J., Jacobs, L.L., Araújo, R., Schulp, A.S., Marinheiro, J., Pereira, B. & Vineyard, D., 2012. Cretaceous amniotes from Angola: Dinosaurs, pterosaurs, mosasaurs, plesiosaurs, and turtles. Jornadas Internacionales sobre Paleontología de Dinosaurios y su Entorno: 75105.
Michener, R.H. & Kaufman, L., 2007. Chapter 9: Stable isotope ratios as tracers in marine food webs: an update. In: Michener, R. & Lajtha, K. (eds): Stable isotopes in ecology and environmental science, 2nd edn. Blackwell Publishing (Malden): 238282.
Miller, K.G., Mountain, G.S., Wright, J.D. & Browning, J.V., 2011. A 180-million-year ecord of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24(2): 4053. doi:10.5670/oceanog.2011.26.
Moulin, M., Aslanian, D., Rabineau, M., Patriat, M. & Matias, L. 2012. Kinematic keys of the Santos-Namibe basins. In: Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemcok, M. & Sinha, S.T. (eds): Conjugate Divergent Margins. Geological Society (London) Special Publications 369: http://dx.doi.org/10.1144/SP369.3.
Müller, R.D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C., 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319: 13571362.
Peters, S.E. & Loss, D.P., 2012. Storm and fair-weather wave base: A relevant distinction? Geology 40: 511514.
Polcyn, M.J. & Bell, G.L., 2005. Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. Netherlands Journal of Geosciences 84(3): 321333.
Polcyn, M.J., Jacobs, L.L., Schulp, A.S. & Mateus, O., 2010. The North African mosasaur Globidens phosphaticus from the Maastrichtian of Angola. Historical Biology 22: 175185.
Polcyn, M.J., Jacobs, L.L., Araújo, R., Schulp, A.S. & Mateus, O., 2014. Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 400: 1727. http://dx.doi.org/10.1016/j.palaeo.2013.05.018
Pyenson, N.D., Irmis, R.B., Lipps, J.H., Barnes, L.G., Mitchell, E.D. Jr. & McLeod, S.A., 2009. Origin of a widespread marine bonebed deposited during the middle Miocene Climatic Optimum. Geology 37(6): 519522.
Pyenson, N.D., Gutstein, C.S., Parham, J.F., Le Roux, J.P., Carreño Chavarría, C., Little, H., Metallo, A., Rossi, V., Valenzuela-Toro, A.M., Velez-Juarbe, J., Santelli, C.M., Rogers, D.R., Cozzuol, M.A. & Suárez, M.E., 2014. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea. Proceedings of the Royal Society of London B 281: 20133316.
Reeves, C., 2014. Atlantic Ocean, 2010 December. Earthworks BV. http://www.reeves.nl/upload/2011SouthAtlantic1.gif.
Reisdorf, A.G., Bux, R., Wyler, D., Benecke, M., Klug, C., Maisch, M.W., Fornaro, P. & Wetzel, A., 2012. Float, explode or sink: postmortem fate of lung-breathing marine vertebrates. Palaeobiodiversity and Palaeoenvironments 92(1): 6781.
Robbins, J.A., Ferguson, K.M., Polcyn, M.J. & Jacobs, L.L., 2008. Application of stable carbon isotope analysis to mosasaur ecology. Everhart M. (ed.): Proceedings of the Second Mosasaur Meeting, Hays, KS, Fort Hays State University: 123130.
Rogers, R.R. & Kidwell, S.M., 2007. A conceptual framework for the genesis and analysis of vertebrate skeletal concentrations. In: Rogers, R.R., Eberth, D.A. & Fiorillo, A.R. (eds): Bonebeds: Genesis, Analysis, and Paleobiological Significance. The University of Chicago Press (Chicago): 163.
Schulp, A.S., Polcyn, M.J., Mateus, O., Jacobs, L.L., Morais, M.L. & Da Silva Tavares, T., 2006. New mosasaur material from the Maastrichtian of Angola, with notes on the phylogeny, distribution and paleoecology of the genus Prognathodon . In: Schulp, A.S. (ed.): On Maastricht Mosasaurs. Publicaties van het Natuurhistorisch Genootschap in Limburg 45: 5767.
Schulp, A.S., Polcyn, M.J., Mateus, O., Jacobs, L.L. & Morais, M.L., 2008. A new species of Prognathodon (Squamata, Mosasauridae) from the Maastrichtian of Angola, and the affinities of the mosasaur genus Liodon. In: Everhart, M.J. (ed.): Proceedings of the Second Mosasaur Meeting, Fort Hays Studies Special Issue 3, Fort Hays State University, Hays, Kansas: 1-12.
Schulp, A.S., Vonhof, H.B., van der Lubbe, J.H.J.L., Janssen, R. & van Baal, R.R., 2013. On diving and diet: resource partitioning in type-Maastrichtian mosasaurs. Netherlands Journal of Geosciences, Geologie en Mijnbouw 92(23): 165170.
Schwimmer, D.R., Stewart, J.D. & Williams, G.D., 1997. Scavenging by sharks of the genus Squalicorax in the Late Cretaceous of North America. Palaios 12: 7183.
Scotese, C.R., 2008. PALEOMAP project. www.scotese.com.
Sessa, J., Callapez, P.M., Dinis, P.A. & Hendy, A.J.W., 2013. Paleoenvironmental and paleobiogeographical implications of a Middle Pleistocene mollusk assemblage from the marine terraces of Baía das Pipas, southwest Angola. Journal of Paleontology 87(6): 10161040.
Shannon, L.V. & Nelson, G. 1996. The Benguela: large scale features and processes and system variability. In: Wefer, G., Berger, W.H., Siedler, G. & Webb, D.J. (eds): The South Atlantic: Past and Present Circulation. Springer-Verlag (Heidelberg): 163210.
Shimada, K., Tsuihiji, T., Sato, T. & Hasegawa, Y., 2010. A remarkable case of a shark-bitten elasmosaurid plesiosaur. Journal of Vertebrate Paleontology 30(2): 592597.
Smith, C.R. & Baco, A.R., 2003. Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology 41: 311354.
Strganac, C., Salminen, J., Jacobs, L.L., Polcyn, M.J., Ferguson, K.M., Mateus, O., Schulp, A.S., Morais, M.L., Tavares, T. da S. & Gonçalves, A.O., 2014. Carbon isotope stratigraphy, magnetostratigraphy, and 40Ar/39Ar age of the Cretaceous South Atlantic coast, Namibe Basin, Angola. Journal of African Earth Sciences. http://dx.doi.org/10.1016/j.jafrearsci.2014.03.003.
Strganac, C., Jacobs, L.L., Polcyn, M.J., Ferguson, K.M., Mateus, O., Gonçalves, A.O., Morais, M.L. & Tavares, T. da S., in press. Stable oxygen isotope chemostratigraphy and paleotemperature regime of mosasaurs at Bentiaba, Angola. Netherlands Journal of Geosciences.
Vogt, P.R. & Eshelman, R., 1987. Maryland’s Cliffs of Calvert: A fossiliferous record mid-Miocene inner shelf and coastal environments. Geological Society of America Field Guide – Northeastern Section 1987: 914.

Keywords

Related content

Powered by UNSILO

Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola

  • C. Strganac (a1) (a2), L.L. Jacobs (a1), M.J. Polcyn (a1), O. Mateus (a3) (a4), T.S. Myers (a1), J. Salminen (a5), S.R. May (a1), R. Araújo (a1) (a4), K.M. Ferguson (a1), A. Olímpio Gonçalves (a6), M.L. Morais (a6), A.S. Schulp (a7) (a8) (a9) and T. da Silva Tavares (a6) (a10)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.