Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T11:54:10.581Z Has data issue: false hasContentIssue false

Construction of maps for soil recycling in regional infrastructural works integrating soil-quality laws

Published online by Cambridge University Press:  01 April 2016

G. Frapporti
Affiliation:
IWACO, Consultants for water and Environment, P.O. Box 8520, 3009 AM ROTTERDAM, the Netherlands; e-mail: g.frapporti@rtd.iwaco.nl
A. Stein
Affiliation:
Agricultural University Wageningen, Dept. of Environmental Sciences, P.O. Box 37, 6700 AA WAGENINGEN, the Netherlands; e-mail: alfred.stein@bodlan.beng.wau.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A soil-quality map is at present an important tool to integrate laws on soil quality with regional infrastructural works. Basic data are commonly available, but soil quality is an indicator that has to be derived from these data, including site-specific environmental standards. We propose three geostatistics-based methods for the comparison of interpolated contaminant concentrations and standards.

The study is illustrated by data from a part of the Betuwe railroad transect, which extends over 12 km in the western Netherlands. As it turns out, a useful procedure is to combine interpolated contaminant concentrations with interpolated threshold values.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Brus, D.J. & DeGruijter, J.J., 1993. Design-based versus model-based estimates of spatial means; theory and application in environmental soil science. Environmetrics 4: 123152.CrossRefGoogle Scholar
Burrough, P.A.B., 1993. Soil variability: a late 20th century view. Soils and Fertilizers 56: 529562.Google Scholar
Gilbert, R.O., 1987. Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold (NewYork): 320 pp.Google Scholar
Lamé, F.P.J., Leenaers, H., Satijn, B. & Frapponi, G., 1997. Toetsen aan de streefwaarde. Internal Report TNO-MEP (Apeldoorn) R97/474; Internal Report IWACO (Rotterdam) 1069130 (for NOVEM, Utrecht): 28 pp.Google Scholar
NNI (Nederlands Normalisatie-Instituut), 1991. Onderzoeksstrategie bij verkennend onderzoek. NNI (Delft) NVN 5740: 36 pp.Google Scholar
NNI (Nederlands Normalisatie-Instituut), 1993. Bodem en slib; Monstervoorbehandeling van grond en slib voor de bepaling van elementen met atomaire-spectrometrie; Ontsluiting met salpeterzuur en zoutzuur in een microgolfoven. NNI (Delft) NVN 5770: 4 pp.Google Scholar
NNI (Nederlands Normalisatie-Instituut), 1994. Bodem; Bepaling van het gehalte aan kwik in grond met atomaire-bsorptiespectrometrie (koude damptechniek) na ontsluiting met salpeterzuur en zoutzuur. NNI (Delft) NEN 5779: 7 pp.Google Scholar
NNI (Nederlands Normalisatie-Instituut), 1995. Water; Bepaling van 40 elementen met behulp van atomaire-mmissiespectrometrie met inductief gekoppeld plasma. NNI (Delft) NEN 6426: 8 pp.Google Scholar
Stein, A., Hoogerwerf, M.R. & Bouma, J., 1988. Use of soil-map delineation to improve (co-) kriging of point data on moisture deficits. Geoderma 43: 163177.CrossRefGoogle Scholar
Van Groenigen, J.W., Stein, A. & Zuurbier, R., 1997. Optimization of environmental sampling using interactive GIS. Soil Technology 10:8398.CrossRefGoogle Scholar