Skip to main content Accessibility help
×
Home

Composition and genesis of rattlestones from Dutch soils as shown by Mössbauer spectroscopy, INAA and XRD

  • J.J. van Loef (a1)

Abstract

The chemical and mineralogical composition of rattlestones found near the main Dutch rivers has been studied by Mössbauer spectroscopy, INAA and XRD. Rattlestones are concretions of iron, formed in an environment of lateral iron accumulation, under the influence of periodical oxidation, around a fine core of ferruginous sediments, mainly clay and sand. The core has shrunk and detached itself from the mantle around it. 57Fe Mössbauer spectroscopy was applied to identify the iron oxides, among which goethite is predominant. The goethite crystallinity was investigated by measuring its magnetic properties and its crystallinity, which is poorest at the outer side of the stone. The latter is confirmed by the broadening of the different X-ray reflections. In addition, illite and vermiculite were identified by XRD; these clay minerals were found mainly in the core.

The elemental composition was determined by INAA. The iron content in the mantle is about 50% by weight and gradually decreases outwards, while the core contains 2–15% Fe by weight. Differences between rattlestones from the Middle Pleistocene East of the Meuse river and those from the Late Pleistocene North of it are the absence of lepidocrocite and a richer mineralogy in the former.

It is concluded that the rattlestones are formed around a fine clayey core. Groundwater supplied the iron and other (trace) elements for the genesis. It is unlikely that rattlestones are the result of oxidation of siderite.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Composition and genesis of rattlestones from Dutch soils as shown by Mössbauer spectroscopy, INAA and XRD
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Composition and genesis of rattlestones from Dutch soils as shown by Mössbauer spectroscopy, INAA and XRD
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Composition and genesis of rattlestones from Dutch soils as shown by Mössbauer spectroscopy, INAA and XRD
      Available formats
      ×

Copyright

References

Hide All
Adams, F.D., 1938. The birth and development of the geological sciences. Ballière, Tindall and Cox (London): 506 pp.
Bromehead, C.N., 1947. Aetites or the eagle-stone. Antiquity 21: 1621.
Coey, J.M., 1988. Magnetic properties of iron in soil iron oxides and clay minerals. In: Stucki, J.W., Goodman, B.A. & Schwertmann, U. (eds.): Iron in soils and clay minerals. Riedel, D. (Dordrecht): 397466.
Cornell, R.M. & Schwertmann, U., 1996. The iron oxides: structure, properties, reactions, occurrence and uses. Verlag Chemie (Weinheim): 573 pp.
Edelman, Th. & De Bruin, M., 1986. Background values of 32 elements in Dutch topsoil, determined with non-destructive neutron activation analysis. In: Assink, J.W. & Van den Brink, W.J. (eds.): Contaminated soil. Martinus Nijhoff Publishers (Dordrecht): 8999.
Fitzpatrick, R.W., 1988. Iron compounds as indicators of pedogenic processes: examples from the southern hemisphere. In: Stucki, J.W., Goodman, B.A. & Schwertmann, U. (eds.): Iron in soils and clay minerals. Riedel, D. (Dordrecht): 351395.
Huisman, D.J., 1998. Geochemical characterization of subsurface sediments in the Netherlands. Thesis Agricultural University Wageningen: 175 pp.
Huisman, D.J., Vermeulen, F.J.M., Baker, J., Veldkamp, A., Kroonenberg, S.B. & Klaver, G.Th, 1997. A geological interpretation of heavy metal concentrations in soils and sediments in the southern Netherlands. Journal of Geochemical Exploration 59: 163174.
Huisman, D.J., Van Os, B.J.H., Klaver, G.Th, & Van Loef, J.J., 1999. Redistribution of REE in aquifers in the Netherlands. In: Armannsson, H. (ed.): Geochemistry of earth’s surface. Balkema, A.A. (Rotterdam): 511514.
Jackson, J.A., 1997. Glossary of geology (4th ed.). American Geological Institute (Alexandria): 769 pp.
Kuzmann, E., Nagy, S., Vértes, A., Weiszburg, T.G. & Garg, V.K., 1998. Geological and mineralogical applications of Mössbauer spectroscopy. In: Vértes, A., Kuzmann, E., Nagy, S., Weiszburg, T.G. & Garg, V.K. (eds.): Nuclear methods in mineralogy and geology. Plenum Press (New York): 285376.
McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B.R. & McKay, G.A. (eds.): Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy 21: 169200.
Meyer, B., 1979. Die Entcarbonatierungsrotung als Bodengenetischer Teilprozess. Mitteilungen der deutschen Bodenkundlichen Gesellschaft 28: 705708.
Michard, A., Beaucaire, C. & Michard, G., 1987. Uranium and rare earth elements in CO2-rich waters from Vals-les Bains (France). Geochimica et Cosmochimica Acta 51: 901909.
Moura, M.L. & Kroonenberg, S.B., 1990. Geochemistry of Quaternary fluvial and eolian sediments in the southeastern Netherlands. Geologie en Mijnbouw 69: 359373.
Munsell Soil Color Charts, 1954. Munsell Company Inc. (Baltmore).
Murad, E. & Bowen, L.H., 1987. Magnetic ordering in Al-rich goethites: influence of crystallinity. American Mineralogist 72: 194200.
Murad, E., 1988. Magnetic properties of iron in soil iron oxides and clay minerals. In: Stucki, J.W., Goodman, B.A. & Schwertmann, U. (eds.): Iron in solids and clay minerals. Riedel, D. (Dordrecht): 309352.
Murad, E., 1996. Magnetic properties of microcrystalline iron (III) and related materials as reflected in their Mössbauer spectra. Physics and Chemistry of Minerals 23: 248262.
Parry, S.J., 1991. Activation spectrometry in chemical analysis. J.Wiley & Sons (New York) 243 pp.
Pettijohn, F.J., 1975. Sedimentary rocks. Harper & Row (New York): 628 pp.
Riezebos, P.A., Bisdom, E.B.A. & Boersma, O., 1978. Composite grains in Maas sediments: a survey and a discussion of their opaque components. Geologie en Mijnbouw 57: 417431.
Schwertmann, U., 1988a. Some properties of soil and synthetic iron oxides. In: Stucki, J.W., Goodman, B.A. & Schwertmann, U. (eds.): Iron in solids and clay minerals. Riedel, D. (Dordrecht): 203250.
Schwertmann, U., 1988b. Occurrence and formation of iron oxides in various pedoenvironments. In: Stucki, J.W., Goodman, B.A. & Schwertmann, U. (eds.): Iron in solids and clay minerals. Riedel, D. (Dordrecht): 267308.
Schwertmann, U. & Taylor, R.M., 1971. The in vitro transformation of soil lepidocrocite to goethite. In: Pseudogley and gley. Transactions of Committees V and VI of the International Society of Soil Science (Stuttgart-Hohenheim) : 4554.
Schwertmann, U. & Taylor, R.M., 1972. The transformation of lepidocrocite to goethite. Clays and Clay Minerals 20: 151158.
Senkayi, A.L., Dixon, J.B. & Hossner, L.R., 1986. Todorokite, goethite and hematite: alteration products of siderite in East Texas lignite overburden. Soil Science 142: 3642.
Van Breemen, N. & Buurman, P., 1998. Soil formation. Kluwer Academic Publishers (Dordrecht): 377 pp.
Van der Burg, W.J., 1969. The formation of rattle stones. Palaeogeography, Palaeoclimatology, Palaeoecology 6: 105124.
Van der Burg, W.J., 1971. The climatological factors. Palaeogeography, Palaeoclimatology, Palaeoecology 7: 297308.
Van der Kraan, A.M., 1972. Mössbauer effect studies of superparamagnetic α-FeOOH and α-Fe2O3 . Thesis Delft University of Technology; Krips (Meppel): 121 pp.
Van der Kraan, A.M. & Van Loef, J.J., 1966 Superparamagnetism and submicroscopic α-FeOOH particles observed by the Mössbauer effect. Physics Letters 20: 614616.
Wedepohl, K.H. (ed.), 1978. Handbook of geochemistry. Springer (New York) : 5 volumes.

Keywords

Composition and genesis of rattlestones from Dutch soils as shown by Mössbauer spectroscopy, INAA and XRD

  • J.J. van Loef (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed