Skip to main content Accessibility help
×
Home

Characterisation of the Groningen subsurface for seismic hazard and risk modelling

  • Pauline P. Kruiver (a1), Ane Wiersma (a1), Fred H. Kloosterman (a1), Ger de Lange (a1), Mandy Korff (a1) (a2), Jan Stafleu (a3), Freek S. Busschers (a3), Ronald Harting (a3), Jan L. Gunnink (a3), Russell A. Green (a4), Jan van Elk (a5) and Dirk Doornhof (a5)...

Abstract

The shallow subsurface of Groningen, the Netherlands, is heterogeneous due to its formation in a Holocene tidal coastal setting on a periglacially and glacially inherited landscape with strong lateral variation in subsurface architecture. Soft sediments with low, small-strain shear wave velocities (V S30 around 200 m s−1) are known to amplify earthquake motions. Knowledge of the architecture and properties of the subsurface and the combined effect on the propagation of earthquake waves is imperative for the prediction of geohazards of ground shaking and liquefaction at the surface. In order to provide information for the seismic hazard and risk analysis, two geological models were constructed. The first is the ‘Geological model for Site response in Groningen’ (GSG model) and is based on the detailed 3D GeoTOP voxel model containing lithostratigraphy and lithoclass attributes. The GeoTOP model was combined with information from boreholes, cone penetration tests, regional digital geological and geohydrological models to cover the full range from the surface down to the base of the North Sea Supergroup (base Paleogene) at ~800 m depth. The GSG model consists of a microzonation based on geology and a stack of soil stratigraphy for each of the 140,000 grid cells (100 m × 100 m) to which properties (V S and parameters relevant for nonlinear soil behaviour) were assigned. The GSG model serves as input to the site response calculations that feed into the Ground Motion Model. The second model is the ‘Geological model for Liquefaction sensitivity in Groningen’ (GLG). Generally, loosely packed sands might be susceptible to liquefaction upon earthquake shaking. In order to delineate zones of loosely packed sand in the first 40 m below the surface, GeoTOP was combined with relative densities inferred from a large cone penetration test database. The marine Naaldwijk and Eem Formations have the highest proportion of loosely packed sand (31% and 38%, respectively) and thus are considered to be the most vulnerable to liquefaction; other units contain 5–17% loosely packed sand. The GLG model serves as one of the inputs for further research on the liquefaction potential in Groningen, such as the development of region-specific magnitude scaling factors (MSF) and depth–stress reduction relationships (r d).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characterisation of the Groningen subsurface for seismic hazard and risk modelling
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characterisation of the Groningen subsurface for seismic hazard and risk modelling
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characterisation of the Groningen subsurface for seismic hazard and risk modelling
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

*Corresponding author: pauline.kruiver@deltares.nl

References

Hide All
Beets, D.J. & van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and the back-barrier basins of Belgium and The Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Netherlands Journal of Geosciences / Geologie en Mijnbouw 79: 316.
Bijlsma, S., 1981. Fluvial sedimentation from the Fennoscandian area into the North-West European Basin during the Late Cenozoic. In: van Loon, A.J. (ed.): Quaternary geology: a farewell to A.J. Wiggers. Geologie en Mijnbouw 60: 337345.
Bommer, J.J., Dost, B., Edwards, B., Kruiver, P.P., Meijers, P., Ntinalexis, M., Polidoro, B., Rodriguez-Marek, A. & Stafford, P.J., 2015. Development of Version 2 GMPEs for response spectral accelerations and significant durations from induced earthquakes in the Groningen field. Version 2, 29 October 2016: 515 pp. Available at www.nam.nl/feiten-en-cijfers/onderzoeksrapporten.html.
Bommer, J.J., Dost, B., Edwards, B., Stafford, P.J., van Elk, J., Doornhof, D. & Ntinalexis, M., 2016. Developing an application-specific ground-motion model for induced seismicity. Bulletin of the Seismological Society of America 106: 158173.
Bommer, J.J., Dost, B., Edwards, B., Kruiver, P.P., Ntinalexis, M., Rodriguez-Marek, A., Stafford, P.J. & van Elk, J., 2017. Developing a model for the prediction of ground motions due to earthquakes in the Groningen gas field. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Bommer, J.J., Stafford, P.J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A., Kruiver, P.P., van Elk, J. & Doornhof, D., in press. Framework for a Ground-Motion Model for induced seismic hazard and risk analysis in the Groningen gas field. Earthquake Spectra. doi: 10.1193/082916EQS138M.
Bosch, J.H.A., 1990. Toelichtingen bij de Geologische Kaart van Nederland 1:50.000, blad Assen West (12W) en blad Assen Oost (12O). Rijks Geologische Dienst (Haarlem), 188 pp.
Bosch, J.H.A., Harting, R. & Gunnink, J.L., 2014. Lithologische karakterisering van de ondiepe ondergrond van Noord-Nederland (Topsysteem hoofdgebied 5). TNO report 2014-R10680. Geological Survey of the Netherlands (Utrecht).
Boulanger, R.W. & Idriss, I.M. 2014. CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis (Davis, CA): 134 pp.
Bourne, S.J., Oates, S.J., Bommer, J.J., Dost, B., van Elk, J. & Doornhof, D., 2015. A Monte Carlo method for probabilistic hazard assessment of induced seismicity due to conventional natural gas production. Bulletin of the Seismological Society of America 105: 1721–1738.
Buijze, L., van den Bogert, P., Wassing, B.B.T., Orlic, B. & ten Veen, J., 2017. Faulting mechanisms and rupture modelling of seismic events induced by gas depletion from a Rotliegend reservoir. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Busschers, F.S., Van Balen, R.T., Cohen, K.M., Kasse, C., Weerts, H.J.T., Wallinga, J. & Bunnik, F.P.M., 2008. Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 37: 377398.
Chilès, J.-P. & Delfiner, P., 2012. Geostatistics – modeling spatial uncertainty. Wiley & Sons (Hoboken, NJ): 699 pp.
Darendeli, M., 2001. Development of a new family of normalized modulus reduction and material damping curves. PhD Thesis. University of Texas (Austin, TX).
Davis, C.A., Giovinazzi, S. & Hart, D.E., 2015. Liquefaction induced flooding in Christchurch, New Zealand. Available at https://secure.tcc.co.nz/ei/images/ICEGE15%20Papers/Davis%20344.00_.pdf.
de Kleine, M.P.E., Noorlandt, R.P., de Lange, G., Karaoulis, M. & Kruiver, P.P., 2016. Geophysical measurements of shear-wave velocity at KNMI accelerograph stations in the Groningen gas field area. Deltares report 1210624-000-BGS-0007. Available at www.nam.nl/feiten-en-cijfers/onderzoeksrapporten.html.
de Vries, F., de Groot, W.J.M., Hoogland, T. & Denneboom, J., 2003. De Bodemkaart van Nederland digitaal; toelichting bij inhoud, actualiteit en methodiek en korte beschrijving van additionele informatie. Alterra-report 811. Alterra (Wageningen): 45 pp.
Douglas, J.B. & Olsen, R.S., 1981. Soil classification using electric cone penetrometer. Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, St Louis, MO: 209227.
Gillins, D.T., 2012. Mapping the probability and uncertainty of liquefaction-induced ground failure. PhD Thesis. University of Utah (Salt Lake City, UT): 297 pp.
Goovaerts, P., 1997. Geostatistics for natural resources evaluation. Oxford University Press (New York): 483 pp.
Green, R.A., Bommer, J.J, Rodriguez-Marek, A. & Stafford, P., 2016. Unbiased cyclic resistance ratio relationships for evaluating liquefaction potential in Groningen: 54 pp. Available at www.nam.nl/feiten-en-cijfers/onderzoeksrapporten.html.
Griffiths, S.C., Cox, B.R., Rathje, E.M. & Teague, D.P. 2016. A surface wave dispersion approach for evaluating statistical models that account for shear wave velocity uncertainty. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 142 (11): 04016062. doi: 10.1061/(ASCE)GT.1943-5606.0001553.
Gunnink, J.L., Maljers, D., Van Gessel, S.F., Menkovic, A. & Hummelman, H.J., 2013. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 92: 3346.
Hijma, M.P., van der Meij, R. & Lam, K.S., 2015. Grasping the heterogeneity of the subsurface: using buildup scenarios for assessing flood risk. In: Schweckendiek, T., Van Tol, A.F., Pereboom, D., Staveren, M.T. Van and Cools, P.M.C.B.M. (eds): Geotechnical Safety and Risk V. IOS Press (Amsterdam): 924929.
Hijma, M.P., Lam, K.S. & van der Hammen, J.M., 2016. Scenario's van de ondergrond voor WBI 2017: kansen en toepassing. Geotechniek 20 (4): 1621.
Idriss, I.M. & Boulanger, R.W., 2008. Soil liquefaction during earthquake. EERI Monograph MNO-12. Earthquake Engineering Research Institute (Oakland, CA): 261 pp.
Kars, R.H., Busschers, F.S. & Wallinga, J., 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12: 7486.
Kluiving, S.J., Bosch, A.J.H., Ebbing, J.H.J., Mesdag, C.S. & Westerhoff, R.S., 2003. Onshore and offshore seismic and lithostratigraphical analysis of a deeply incised Quaternary buried valley system in the Northern Netherlands. Journal of Applied Geophysics 53 (4): 249271.
Koomen, A.J.M. & Maas, G.J., 2004. Geomorfologische Kaart Nederland (GKN); Achtergronddocument bij het landsdekkende digitale bestand. Alterra Report 1039. Alterra (Wageningen): 38 pp.
Korff, M., Wiersma, A., Meijers, P., Kloosterman, F.H., de Lange, G., van Elk, J. & Doornhof, D., 2017. Liquefaction mapping for induced seismicity based on geological and geotechnical features. 3rd International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-III), 16–19 July 2017, Vancouver, Canada. Conference proceedings.
Kruiver, P.P., van Dedem, E., Romijn, R., de Lange, G., Korff, M., Stafleu, J., Rodriguez-Marek, A., van Elk, J. & Doornhof, D., 2017. An integrated shear-wave velocity model for the Groningen gas field. Bulletin of Earthquake Engineering. doi: 10.1007/s10518-017-0105-y.
Kulhawy, F.H. & Mayne, P.H., 1990. Manual on estimating soil properties for foundation design. Report EPRI-EL-6800. Electric Power Research Institute (Palo Alto, CA).
Lasley, S., Green, R.A. & Rodriguez-Marek, A., 2016a. A new stress reduction coefficient relationship for liquefaction triggering analyses. Technical note. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 142 (11): 06016013. doi: 10.1061/(ASCE)GT.1943-5606.0001530.
Lasley, S., Green, R.A. & Rodriguez-Marek, A., 2016b. Number of equivalent stress cycles for liquefaction evaluations in active tectonic and stable continental regimes. Journal of Geotechnical and Geoenvironmental Engineering 143 (4): 04016116. doi: 10.1061/(ASCE)GT.1943-5606.0001629.
Lee, J.R., Busschers, F.S. & Sejrup, H.P., 2012. Pre-Weichselian Quaternary glaciations of the British Isles, The Netherlands, Norway and adjacent marine areas south of 68°N: implications for long-term ice sheet development in northern Europe. Quaternary Science Reviews 44: 213228.
Lunne, R. & Christoffersen, H.P., 1983. Interpretation of cone penetrometer data for offshore sands. Offshore Technology Conference, 2–5 May 1983, Houston, TX, USA, paper OT 4464. Available at https://www.onepetro.org/conference-paper/OTC-4464-MS.
Lunne, T., Robertson, P.K. & Powell, J.J.M., 1997. Cone penetration testing in geotechnical practice. EF Spon/Blackie Academic, Routledge Publishers (London): 312 pp.
Maljers, D., Stafleu, J., Van der Meulen, M.J. & Dambrink, R.M., 2015. Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments. Netherlands Journal of Geosciences / Geologie en Mijnbouw 94: 257270.
Matasovic, N. & Hashash, Y., 2012. NCHRP synthesis 428: practices and procedures for 575 site-specific evaluations of earthquake ground motions – a synthesis of Highway 576 Practice. National Cooperative Highway Research Program of the Transportation 577 Research Board (Washington DC).
Meijles, E.W., Aaldersberg, G. & Groenendijk, H.A., 2016. Terp composition in respect to earthquake risk in Groningen. Report. Rijksuniversiteit Groningen (Groningen). Available at www.nam.nl/feiten-en-cijfers/onderzoeksrapporten.html.
Menq, F.Y., 2003. Dynamic properties of sandy and gravelly soils. PhD Thesis. University of Texas, Austin (Austin, TX).
Overeem, I., Weltje, G.J., Bishop-Kay, C. & Kroonenberg, S.B., 2001. The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply? Basin Research 13: 293312.
Pierik, H.J., Cohen, K.M., Vos, P.C., van der Spek, A.J.F. & Stouthamer, E., 2017. Late Holocene coastal-plain evolution of the Netherlands: the role of natural preconditions in human-induced sea ingressions. Proceedings of the Geologists’ Association 128 (2): 180197.
Rijkers, R.H.B., Huisman, D.J., De Lange, G., Weijers, J.P. & Witmans-Parker, N., 1998. Inventarisatie geomechanische, geochemische en geohydrologische eigenschappen van Tertiaire kleipakketten – CAR Fase II. TNO report NITG 98-90-B. TNO (Utrecht): 167 pp.
Robertson, P.K., 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal 27 (1): 151158.
Rodriguez-Marek, A., Rathje, E.M., Bommer, J.J., Scherbaum, F. & Stafford, P.J., 2014. Application of single-station sigma and site response characterization in a probabilistic seismic hazard analysis for a new nuclear site. Bulletin of the Seismological Society of America 104 (4), 16011619.
Rodriguez-Marek, A., Kruiver, P.P., Meijers, P., Bommer, J.J., Dost, B., van Elk, J. & Doornhof, D., 2017. A regional site-response model for the Groningen gas field. Bulletin of the Seismological Society of America, in press.
Roeleveld, W., 1974. The Holocene evolution of the Groningen marine-clay district. Oudheidkundig Bodemonderzoek 24: 1133.
Ruegg, G.H.J. & Zandstra, J.G., 1977. Pliozaene und pleistozaene gestauchte Ablagerungen bei Emmerschans (Drenthe, Niederlande). Mededelingen Rijks Geologische Dienst, Nieuwe Serie 28: 6599.
Sier, M.J., Peeters, J., Dekkers, M.J., Parés, J.M., Chang, L., Busschers, F.S., Wallinga, J., Cohen, K.M., Bunnik, F.P.M & Roebroeks, W., 2015. The Blake Event record near the Eemian type locality: a diachronic onset of the Eemian in Europe. Quaternary Geochronology 28: 1228.
Skempton, A.W. & Henkel, D.J., 1953. The post-glacial clays of the Thames Estuary at Tilbury and Shellhaven. 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich, Switzerland 1: 302–308. Conference proceedings.
Soares, A., 1992. Geostatistical estimation of multi-phase structure. Mathematical Geology 24: 149160.
Song, Q., 1997. The effects of local geology and liquefaction on seismic ground motion. PhD Thesis. University of Ottawa (Ottawa).
Sorensen, K.K. & Okkels, N., 2013. Correlation between drained shear strength and plasticity index of undisturbed overconsolidated clays. 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2–6 September 2013, Paris, France: 423–428. Conference proceedings.
Stafleu, J. & Dubelaar, C.W., 2016. Product specification Subsurface model GeoTOP. TNO Report 2016-R10133 v1.3. TNO (Utrecht): 53 pp. Available at www.dinoloket.nl/en/want-know-more.
Stafleu, J., Maljers, D., Gunnink, J.L., Menkovic, A. & Busschers, F.S., 2011. 3D modeling of the shallow subsurface of Zeeland, the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 90: 293310.
Stafleu, J., Maljers, D., Busschers, F.S., Gunnink, J.L., Schokker, J., Dambrink, R.M., Hummelman, H.J. & Schijf, M.L., 2012. GeoTOP modellering. TNO Report 2012-R10991. TNO (Utrecht): 216 pp. Available at www.dinoloket.nl/en/want-know-more.
Steur, G.G.L. & Heijink, W., 1991. Bodemkaart van Nederland, Schaal 1:50 000. Algemene begrippen en indelingen, 4e uitgebreide uitgave. DLO Staring Centrum (Wageningen).
TNO, 2016. Details DGM-deep V4 onshore: general workflow, modelled units, data updates and deliverables. TNO (Utrecht). Available at www.nlog.nl/en/details-dgm-deep-v4-onshore.
Toro, G. R., 1995. Probabilistic models of site velocity profiles for generic and site-specific ground-motion amplification studies. Technical Report 779574. Brookhaven National Laboratory (Upton, NY).
van den Berg, M.W. & Beets, D.J., 1987. Saalian glacial deposits and morphology in The Netherlands. In: Van der Meer, J.J.M. (ed.): Tills and glaciotectonics. Balkema (Rotterdam): 235251.
van den Berg, J.H. & Nio, S.D., 2010. Sedimentary structures and their relation to bedforms and flow conditions. European Association of Geoscientists and Engineers (Houten): 138 pp.
van der Linden, T.I. (2016) Influence of multiple thin soft layers on the cone resistance in intermediate soils. MSc Thesis. Technical University of Delft (Delft). Available at http://repository.tudelft.nl/islandora/object/uuid:756ae85e-c1a2-4d3e-b070-5f237d521699.
van der Meulen, M.J., Doornenbal, J.C., Gunnink, J.L., Stafleu, J., Schokker, J., Vernes, R.W., Van Geer, F.C., Van Gessel, S.F., Van Heteren, S., Van Leeuwen, R.J.W., Bakker, M.A.J., Bogaard, P.J.F., Busschers, F.S., Griffioen, J., Gruijters, S.H.L.L., Kiden, P., Schroot, B.M., Simmelink, H.J., Van Berkel, W.O., Van der Krogt, R.A.A., Westerhoff, W.E. & Van Daalen, T.M., 2013. 3D geology in a 2D country: perspectives for geological surveying in the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 92: 217241.
van Elk, J., van Oeveren, H., Valvatne, P. & Geurtsen, L., 2017. The Groningen reservoir model, part II. Netherlands Journal of Geosciences, this issue.
Vernes, R.W. & Van Doorn, Th.H.M., 2005. Van Gidslaag naar Hydrogeologische Eenheid – Toelichting op de totstandkoming van de dataset REGIS II. TNO Report 05-038-B. TNO (Delft): 105 pp. Available at www.dinoloket.nl/meer-weten-over-regis-ii.
Vernes, R.W., Bosch, J.H.A., Harting, R., Maljers, D. & Schokker, J., 2013. Datainventarisatie, kartering en parametrisatie van keileem in het MIPWA-gebied. TNO Report 2013 R10107. TNO (Delft): 152 pp. Available upon request at .
Villet, W.C.B. & Mitchell, J.K., 1981. Cone resistance, relative density and friction angle. Session on Cone Penetration Testing and Experience, ASCE National Convention, October 1981, St Louis, MO: 178–208. Conference proceedings.
Visser, C. & Solano Viota, J., 2017. The Groningen reservoir model, part I. Static reservoir model. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Vos, P.C., 2015. Origin of the Dutch coastal landscape. Long-term landscape evolution of the Netherlands during the Holocene, described and visualized in national, regional and local palaeogeographical map series. PhD Thesis. Utrecht University (Utrecht).
Vos, P.C. & Knol, E., 2015. Holocene landscape reconstruction of the Wadden Sea area between Marsdiep and Weser. Netherlands Journal of Geosciences / Geologie en Mijnbouw 94: 157183.
Vos, P.C., Bazelmans, J., Weerts, H.J.T. & Van der Meulen, M.J., 2011. Atlas van Nederland in het Holoceen. Bakker (Amsterdam): 93 pp.
Wassing, B.B.T., Maljers, D., Westerhoff, R.S., Bosch, J.H.A. & Weerts, H.J.T., 2003. Seismisch hazard van geïnduceerde aardbevingen, Rapportage fase 1. Report nr. NITG-03-185-C-def.
Youd, T.L. & Perkins, D.M., 1978. Mapping liquefaction-induced ground failure potential. Journal of the Geotechnical Engineering Division 104, No. GT4: 433446.
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and the Quaternary: a case history of coastal lowland evolution. Geologie en Mijnbouw 68: 107120.

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

Kruiver et al. supplementary material
Table S1

 PDF (31 KB)
31 KB
PDF
Supplementary materials

Kruiver et al. supplementary material
Figure 2

 PDF (6.1 MB)
6.1 MB
PDF
Supplementary materials

Kruiver et al. supplementary material
Figure 3

 PDF (16.6 MB)
16.6 MB

Characterisation of the Groningen subsurface for seismic hazard and risk modelling

  • Pauline P. Kruiver (a1), Ane Wiersma (a1), Fred H. Kloosterman (a1), Ger de Lange (a1), Mandy Korff (a1) (a2), Jan Stafleu (a3), Freek S. Busschers (a3), Ronald Harting (a3), Jan L. Gunnink (a3), Russell A. Green (a4), Jan van Elk (a5) and Dirk Doornhof (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.