Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T05:55:08.371Z Has data issue: false hasContentIssue false

Belemnite-based strontium, carbon and oxygen isotope stratigraphy of the type area of the Maastrichtian Stage*

Published online by Cambridge University Press:  24 March 2014

H.B. Vonhof*
Affiliation:
Vrije Universiteit Amsterdam, Faculteit Aard- en Levenswetenschappen, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands
J.W.M. Jagt
Affiliation:
Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands
A. Immenhauser
Affiliation:
Vrije Universiteit Amsterdam, Faculteit Aard- en Levenswetenschappen, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands
J. Smit
Affiliation:
Vrije Universiteit Amsterdam, Faculteit Aard- en Levenswetenschappen, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands
Y.W. van den Berg
Affiliation:
TNO Built Environment and Geosciences, Princetonlaan 6, NL-3508 TA Utrecht, the Netherlands
M. Saher
Affiliation:
University of Plymouth, School of Geography, Earth and Environmental Sciences, 8 Kirkby Place, Drake Circus, Plymouth PL4 8AA, United Kingdom
N. Keutgen
Affiliation:
KFPBR, Uniwersytet Techniczno Bydgoszcz, ul. Bernardyńska 6/8, PL-85 029 Bydgoszcz, Poland
J.J.G. Reijmer
Affiliation:
Vrije Universiteit Amsterdam, Faculteit Aard- en Levenswetenschappen, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Belemnitellid cephalopods from the Maastrichtian stratotype area (southeast Netherlands) are shown to be comparatively well preserved. Although partial diagenetic alteration has been observed, micromilling techniques have permitted the extraction of pristine belemnite calcite, suitable for the reconstruction of strontium (Sr), oxygen (O) and carbon (C) isotope variation of Maastrichtian seawater. A distinct Sr isotope pattern in the Maastricht record can be matched stratigraphically with records from Hemmoor (northern Germany), El Kef (Tunisia) and ODP site 690 (Maud Rise, Antarctica), leading to a new chemostratigraphical age model for the Maastrichtian stratotype section. Our data improve currently applied strontium isotope stratigraphical reference curves by revealing an Sr isotope inflection pattern near the lower/upper Maastrichtian boundary that is a potentially diagnostic feature for intra-Maastrichtian stratigraphical correlation between distant sections. Belemnites further show significant stratigraphical oxygen isotope variation through the Maastrichtian. We interpret this variation to have resulted from palaeoceanographic reorganisations in the Atlantic Ocean during this time interval.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2011

Footnotes

*

In: Jagt, J.W.M., Jagt-Yazykova, E.A. & Schins, W.J.H. (eds): A tribute to the late Felder brothers – pioneers of Limburg geology and prehistoric archaeology.

References

Barrera, E., Savin, S.M., Thomas, E. & Jones, C.E., 1997. Evidence for thermohaline-circulation reversals controlled by sea-level change in the latest Cretaceous. Geology 25: 715718.Google Scholar
Brinkhuis, H. & Smit, J., 1996. The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands); an introduction. In: Brinkhuis, H. & Smit, J. (eds): The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geologie en Mijnbouw 75: 101106.Google Scholar
Clauser, S., 1994. Études stratigraphiques du Campanien et du Maastrichtien de l'Europe occidentale. Côte Basque, Charentes (France), Limbourg (Pays-Bas). Biochronologie, magnétostratigraphie, stratigraphie isotopique, radiochronologie comparée de domaine océanique et des régions stratotypiques. Contribution à la paléoclimatologie du Crétacé Supérieur. Documents du Bureau des Recherches Géologiques et Minières 235: 1243.Google Scholar
Dortangs, R.W., Schulp, A.S., Mulder, E.W.A., Jagt, J.W.M., Peeters, H.H.G. & de Graaf, D.T., 2002. A large new mosasaur from the Upper Cretaceous of The Netherlands. Netherlands Journal of Geosciences 81: 18.Google Scholar
Elorza, J., Garcia Garmilla, F. & Jagt, J.W.M., 1996. Diagenesis-related differences in isotopic and elemental composition of late Campanian and early Maastrichtian inoceramids and belemnites from NE Belgium: palaeoenvironmental implications. Geologie en Mijnbouw 75: 349360.Google Scholar
Felder, P.J., Keppens, E., Declercq, B., Normand, S. & Streel, M., 2003. Faunal/floral and isotopic responses to Milankovitch precession cycles and environmental changes in the upper Gulpen Formation (Upper Maastrichtian) at the CBR-Lixhe and ENCI-Maastricht bv quarries. Netherlands Journal of Geosciences 82: 275281.Google Scholar
Felder, W.M., 1995. Historical overview of lithostratigraphic research on the Upper Cretaceous of southern Limburg, the Netherlands. Geologie en Mijnbouw 74: 287300.Google Scholar
Frank, T.D. & Arthur, M.A., 1999. Tectonic forcings of Maastrichtian ocean-climate evolution. Paleoceanography 14: 103117.Google Scholar
Friedrich, O., Herrle, J.O., Wilson, P.A., Cooper, M.J., Erbacher, J. & Hemleben, C., 2009. Early Maastrichtian carbon cycle perturbation and cooling event: implications from the South Atlantic Ocean. Paleoceanography 24: PA2211, doi:10.1029/2008PA001654Google Scholar
Gradstein, F., Ogg, J.G. & Smith, A.G., 2004. A geological time scale 2004. Cambridge University Press (Cambridge/New York/Melbourne): 589 pp.Google Scholar
Hamilton, N., 1990. Mesozoic magnetostratigraphy of Maud Rise, Antarctica. Proceedings of the Ocean Drilling Program, Scientific Results 113: 255260.Google Scholar
Hess, J., Bender, M.L. & Schilling, J.G., 1986. Evolution of the ratio of Sr-87 to Sr-86 in seawater from Cretaceous to present. Science 231: 979984.Google Scholar
Hofker, J., 1961. Die Foraminiferen-Fauna der Gruben Hemmoor und Basbeck. Paläontologsche Zeitschrift 35: 123145.Google Scholar
Huber, B.T., Norris, R.D. & MacLeod, K.G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30: 123126.2.0.CO;2>CrossRefGoogle Scholar
Jagt, J.W.M., 2005. Stratigraphic ranges of mosasaurs in Belgium and the Netherlands (Late Cretaceous) and cephalopod-based correlations with North America. Netherlands Journal of Geosciences 84: 283301.Google Scholar
Jagt, J.W.M., 2010. Upper Cretaceous and Lower Paleogene in the type area of the Maastrichtian Stage (70.6-65.5 Ma). Berichte-Reporte Institut für Geowissenschaften, Universität Kiel 23: 121.Google Scholar
Jagt, J.W.M., Felder, W.M., Dortangs, R.W. & Severijns, J., 1996. The Cretaceous/Tertiary boundary in the Maastrichtian type area (SE Netherlands, NE Belgium); a historical account. In: Brinkhuis, H. & Smit, J. (eds): The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geologie en Mijnbouw 75: 107118.Google Scholar
Jarvis, I., Gale, A.S., Jenkyns, H.C. & Pearce, M.A., 2006. Secular variation in Late Cretaceous carbon isotopes: a new delta c-13 carbonate reference curve for the Cenomanian-Campanian (99.6-70.6 ma). Geological Magazine 143: 561608.Google Scholar
Kenter, J.A.M., Fouke, B.W. & Reinders, M., 1997. Effects of differential cementation on the sonic velocities of Upper Cretaceous skeletal grainstones (southeastern Netherlands). Journal of Sedimentary Research 67:178185.Google Scholar
Keutgen, N. & Jagt, J.W.M., 2009. Correlation of Maastrichtian strata in the southeast Netherlands and adjacent regions, northern Germany, northern Spain and the USA. Byulleten' Moskovskogo Obshchestva Ispytatelej Prirody, Otdel Geologicheskii 84: 7177.Google Scholar
Keutgen, N., Jagt, J.W.M., Felder, P.J. & Jagt-Yazykova, E.A., 2010. Stratigraphy of the upper Vijlen Member (Gulpen Formation; Maastrichtian) in northeast Belgium, the southeast Netherlands and the Aachen area (Germany), with special reference to belemnitellid cephalopods. Netherlands Journal of Geosciences 89: 109136.Google Scholar
Lowenstam, H.A. & Epstein, S., 1954. Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method. Journal of Geology 62: 207248.Google Scholar
Macdougall, J.D., 1988. Seawater strontium isotopes, acid rain, and the Cretaceous-Tertiary boundary. Science 239: 485487.Google Scholar
MacLeod, K.G. & Huber, B.T., 1996. Strontium isotopic evidence for extensive reworking in sediments spanning the Cretaceous-Tertiary boundary at ODP Site 738. Geology 24: 463466.Google Scholar
Martin, E.E. & Macdougall, J.D., 1991. Seawater Sr isotopes at the Cretaceous Tertiary boundary. Earth and Planetary Science Letters 104: 166180.CrossRefGoogle Scholar
McArthur, J.M. & Howarth, R.J., 2004. Sr-isotope stratigraphy: the Phanerozoic 87Sr/86Sr curve and explanatory notes. In: Gradstein, F., Ogg, J. & Smith, A.G. (eds): A geological timescale 2004. Cambridge University Press (Cambridge / New York / Melbourne).Google Scholar
McArthur, J.M., Thirlwall, M.F., Chen, M., Gale, A.S. & Kennedy, W.J., 1993. Strontium isotope stratigraphy in the Late Cretaceous – numerical calibration of the Sr isotope curve and intercontinental correlation for the Campanian. Paleoceanography 8: 859873.Google Scholar
McArthur, J.M., Kennedy, W.J., Chen, M., Thirlwall, M.F. & Gale, A.S., 1994. Strontium isotope stratigraphy for Late Cretaceous time – direct numerical calibration of the Sr isotope curve based on the United States Western Interior. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 95119.Google Scholar
McArthur, J.M., Thirlwall, M.F., Engkilde, M., Zinsmeister, W.J. & Howarth, R.J., 1998. Strontium isotope profiles across K/T boundary sequences in Denmark and Antarctica. Earth and Planetary Science Letters 160: 179192.Google Scholar
McArthur, J.M., Howarth, R.J. & Bailey, T.R., 2001. Strontium isotope stratigraphy: Lowess version 3. Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology 109: 155170.Google Scholar
McArthur, J.M., Mutterlose, J., Price, G.D., Rawson, P.F., Ruffell, A. & Thirlwall, M.F., 2004. Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (Sr-87/Sr-86, delta C-13, delta O-18, Na, Sr, Mg), and palaeo-oceanography. Palaeogeography, Palaeoclimatology, Palaeoecology 202: 253272.Google Scholar
McLaughlin, O.M., McArthur, J.M., Thirlwall, M.F., Howarth, R., Burnett, J., Gale, A.S. & Kennedy, W.J., 1995. Sr isotope evolution of Maastrichtian seawater, determined from the chalk of Hemmoor, NW Germany. Terra Nova 7: 491499.CrossRefGoogle Scholar
Meisel, T., Krahenbuhl, U. & Nazarov, M.A., 1995. Combined osmium and strontium isotopic study of the Cretaceous-Tertiary boundary at Sumbar, Turkmenistan – a test for an impact vs a volcanic hypothesis. Geology 23: 313316.Google Scholar
Mutterlose, J., Malkoc, M., Schouten, S., Sinnighe Damsté, J.S. & Forster, A., 2010. Tex86 and stable δ18O paleothemometry of Early Cretaceous sediments: implications for belemnite ecology and paleotemperature proxy application. Earth and Planetary Science Letters 298: 286298.Google Scholar
Nederbragt, A., 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37: 329372.CrossRefGoogle Scholar
Nederbragt, A.J., Thurow, J., Vonhof, H. & Brumsack, H.J., 2004. Modelling oceanic carbon and phosphorus fluxes: implications for the cause of the late Cenomanian Oceanic Anoxic Event (OAE2). Journal of the Geological Society 161: 721728.Google Scholar
Nelson, B.K., MacLeod, G.K. & Ward, P.D., 1991. Rapid change in strontium isotopic composition of sea-water before the Cretaceous Tertiary boundary. Nature 351: 644647.Google Scholar
Niebuhr, B., 2006. Multistratigraphische Gliederung der norddeutschen Schreibkreide (Coniac bis Maastricht), Korrelation von Aufschlüssen und Bohrungen. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 157: 245262.Google Scholar
Niebuhr, B. & Joachimski, M.M., 2002. Stable isotope and trace element geochemistry of Upper Cretaceous carbonates and belemnite rostra (middle Campanian, north Germany). Geobios 35: 5164.CrossRefGoogle Scholar
Ogg, J.G., Ogg, G. & Gradstein, F.M., 2008. The concise geologic time scale. Cambridge University Press (Cambridge/NewYork/Melbourne): vi + 1177.Google Scholar
Podlaha, O.G., Mutterlose, J. & Veizer, J., 1998. Preservation of delta O-18 and delta C-13 in belemnite rostra from the Jurassic-Early Cretaceous successions. American Journal of Science 298: 324347.Google Scholar
Schiøler, P., Brinkhuis, H., Roncaglia, L. & Wilson, G.J., 1997. Dinoflagellate biostratigraphy and sequence stratigraphy of the Type Maastrichtian (Upper Cretaceous), ENCI Quarry, the Netherlands. Marine Micropaleontology 31: 6595.Google Scholar
Schulz, M.-G., Ernst, G., Ernst, H. & Schmid, F., 1984. Coniacian to Maastrichtian stage boundaries in the standard section for the Upper Cretaceous white chalk of NW Germany (Lägerdorf-Kronsmoor-Hemmoor): definitions and proposals. Bulletin of the Geological Society of Denmark 33: 203215.Google Scholar
Sælen, G., 1989. Diagenesis and construction of the belemnite rostrum. Palaeontology 32: 765797.Google Scholar
Sælen, G., Doyle, P. & Talbot, M.R., 1996. Stable-isotope analyses of belemnite rostra from the Whitby Mudstone Fm, England: surface water conditions during deposition of a marine black shale. Palaios 11: 97117.Google Scholar
Smit, J. & Brinkhuis, H., 1996. The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands); summary of results and a scenario of events. In: Brinkhuis, H. & Smit, J. (eds): The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geologie en Mijnbouw 75: 283293.Google Scholar
Spaeth, C., Hoefs, J. & Vetter, U., 1971. Some aspects of isotopic composition of belemnites and related paleotemperatures. Geological Society of America Bulletin 82: 31393150.Google Scholar
Sugarman, P.J., Miller, K.G., Bukry, D. & Feigenson, M.D., 1995. Uppermost Campanian-Maestrichtian strontium isotopic, biostratigraphic, and sequence stratigraphic framework of the New Jersey coastal plain. Geological Society of America Bulletin 107: 1937.Google Scholar
Van de Schootbrugge, B., Föllmi, K.B., Bulot, L.G. & Burns, S.J., 2000. Paleoceanographic changes during the Early Cretaceous (Valanginian-Hauterivian): evidence from oxygen and carbon stable isotopes. Earth and Planetary Science Letters 181: 1531.Google Scholar
Van de Schootbrugge, B., McArthur, J.M., Bailey, T.R., Rosenthal, Y., Wright, J.D. & Miller, K.G., 2005. Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records. Paleoceanography 20: PA3008, doi: 10.1029/2004PA001102.Google Scholar
Veizer, J. & Fritz, P., 1976. Possible control of post-depositional alteration in oxygen paleotemperature determinations. Earth and Planetary Science Letters 33: 255260.Google Scholar
Vonhof, H.B. & Smit, J., 1996. Strontium-isotope stratigraphy of the type Maastrichtian and the Cretaceous/Tertiary boundary in the Maastricht area (SE Netherlands). In: Brinkhuis, H. & Smit, J. (eds): The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geologie en Mijnbouw 75: 275282.Google Scholar
Vonhof, H.B. & Smit, J., 1997. High-resolution late Maastrichtian-early Danian oceanic Sr-87/Sr-86 record: implications for Cretaceous-Tertiary boundary events. Geology 25: 347350.Google Scholar
Weiss, W., 1999. Foraminiferal biostratigraphy of the marine Maastrichtian in northern Germany. In: Schulp, A.S., Jagt, J.W.M. & de Graaf, D.T. (eds): 150th anniversary of the Maastrichtian Stage: a celebratory conference. Natuurhistorisch Museum Maastricht, 17-21 November 1999, Conference programme, abstracts and field guide: 58-59.Google Scholar