Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T22:05:35.975Z Has data issue: false hasContentIssue false

Application of paleoseismological techniques to the study of Late Pleistocene-Holocene deep-seated gravitational movements at the Mortirolo Pass (central Alps, Italy)

Published online by Cambridge University Press:  01 April 2016

F. Galadini
Affiliation:
CNR, Istituto di Ricerca sulla Tettonica Recente, Area di Ricerca di Roma-Tor Vergata, via del Fosso del Cavaliere, 1-00133, Roma, Italy (e-mail: galad@irtr.rm.cnr.it)
F. Forcella
Affiliation:
Dipartimento di Scienze della Terra e Geotecnologie, Università degli Studi di Milano-Bicocca, Italy; CNR, Centro di Studio per la Geodinamica Alpina e Quaternaria, Milano, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Paleoseismological techniques have been used to investigate gravitational deformations at the Mortirolo Pass (Valtellina region, central Alps), in order to improve the knowledge on the activation mechanisms and the evolution of deep-seated gravitational slope movements. The deformation has been responsible for mass sliding towards the Valtellina depression through the activation of several-hundred-metre-long shear planes. Minor shear planes dipping towards the mountain played the role of antithetic structures. Four trenches were excavated across scarps representing the surficial expression of shear planes affecting the bedrock and Late Pleistocene-Holocene deposits. The excavations enabled to investigate the stratigraphy of Quaternary deposits and the geometry and kinematics of the shear planes affecting them. Radiocarbon analyses on organic material contained in sediments and paleosols enabled to define a succession of displacement events which occurred during the Late Pleistocene-Holocene. Collected data indicate the persistence of the activity until recent times (last movement related to 1810-1540 cal. BP). A sudden movement has been detected along one of the main shear surfaces (dipping towards the valley) with a vertical displacement of several metres. In contrast, numerous displacements (with lower vertical offset) have been detected along the antithetic shear planes. Different hypotheses have been proposed in the past to define the origin of huge gravitational movements (glacial retreat, uplift of the Alpine chain, fault activity). However, the Late Pleistocene cycles of glacial loading and unloading on the mountain slopes seem to be the most probable factors causing deep-seated gravitational movements in the investigated region. A recent dramatic landslide in an area adjacent to the investigated one (Mt. Zandila-Valpola) testifies to the paroxistic evolution of the large scale gravitational deformations. The densely inhabited Valtellina region is affected by a large number of gravitational structures similar to those of the Mortirolo area. In consideration of the possible effects of the paroxistic activation of these structures, detailed studies on the chronology and kinematics of the deformations through the application of paleoseismological techniques should therefore be encouraged.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Azzoni, A., Chiesa, S., Frassoni, A. & Govi, M., 1992. The Valpola landslide. Engineering Geology 33: 5970.CrossRefGoogle Scholar
Beck, A.C., 1968. Gravity faulting as a mechanism of topographic adjustement. New Zealand Journal of Geology and Geophysics 11: 191199.Google Scholar
Beck, C., Manalt, F., Chapron, E., Van Rensbergen, P. & De Batist, M., 1996. Enhanced seismicity in the Post-Glacial period: evidence from the Post-Würm sediments of Lake Annecy, northwestern Alps. Journal of Geodynamics 22: 155171.Google Scholar
Bini, A., Cita, M.B. & Gaetani, M., 1978. Southern Alpine lakes -Hypothesis of an erosional origin related to the Messinian entrenchment. Marine Geology 27: 271288.CrossRefGoogle Scholar
Castellarin, A., Fesce, A.M., Picotti, V., Pini, G.A., Prosser, G., Sartori, R., Selli, L., Cantelli, L. & Ricci, R., 1987. Structural and kinematic analysis of the Giudicane deformation belt. Implications for compressional tectonics of Southern Alps. Mineralogica Petrográfica Acta 30: 287310.Google Scholar
Cremaschi, M. & Rodolfi, G., 1991. Il suolo. Pedologia nelle scienze della terra e nella valutazione del territorio. Roma: 427 pp.Google Scholar
Dehls, J.F., Olesen, O., Olsen, L. & Blikra, L.H., 2000. Neotectonic faulting in northern Norway; the Stuoragurra and Nordman-nvikdalen postglacial faults. Quaternary Science Reviews 19:14471460.Google Scholar
Dramis, F. & Sorriso-Valvo, M., 1994. Deep seated slope deformations, related landslides and tectonics. Engineering Geology 38: 231243.CrossRefGoogle Scholar
Dramis, F., Govi, M., Guglielmin, M. & Mortara, G., 1995. Mountain Permafrost and Slope Instability in the Italian Alps. Permafrost and Periglacial Processes 6: 7381.Google Scholar
Felber, M., Frei, W. & Heitzmann, P., 1991. Seismic evidence of pre-Pliocene valley formation near Novazzano (Ticino, Switzer-land). Eclogae geologica Helvetia 84: 753761.Google Scholar
Finck, P., 1978. Are southern Alpine lakes former Messinian canyons? Geophysical evidence for preglacial erosion in the southern lakes. Marine Geology 27: 289302.CrossRefGoogle Scholar
Forcella, F., 1984. The Sackung between Mount Padrio and Mount Varadega, Central Alps, Italy: a remarkable example of slope gravitational tectonics. Mediterranée 51: 8192.Google Scholar
Forcella, F., Onida, M., &Tibaldi, A., 1998. Risultati preliminari di un’indagine di tipo paleosismologico applicata allo studio di deformazioni recenti in ambiente alpino, alta Valtellina (Alpi Centrali, Italia). Geologia Insubrica 3: 6372.Google Scholar
Froitzheim, N., Schmid, St. & Conti, P., 1994. Repeated change from crustal shortening to orogen-parallel extension in the Aus-tralpine units of Graubünden. Eclogae geologica Helvetia 87: 559612.Google Scholar
Giardino, M., 1996. Aspetti metodologici e problemi cartografici dello studio di deformazioni superficiali nella media Valle d’Aosta. Il Quaternario 9: 227232.Google Scholar
Giardino, M. & Polino, R., 1997. Le deformazioni di versante dell’alta valle di Susa: risposta pellicolare dell’evoluzione tettonica recente. Il Quaternario 10: 293298.Google Scholar
Gudmundsson, G.H., 1994. An order-of-magnitude estimate of the current uplift-rates in Switzerland caused by the Würm Alpine déglaciation. Eclogae Geologicae Helvetiae 87: 545557.Google Scholar
Laubscher, H.P., 1988. Material balance in Alpine orogeny. Bulletin of the Geological Society of America 100: 13131328.2.3.CO;2>CrossRefGoogle Scholar
Mahr, T., 1977. Deep-reaching gravitational deformations of high mountain slopes. Bulletin of the International Association of Engineering Geology 16: 121127.Google Scholar
McCalpin, J., 1996. Paleoseimology. Academic Press, San Diego: 588 pp.Google Scholar
McCalpin, J.P. & Irvine, J.R., 1995. Sackungen at the Aspen highlands Ski Area, Pitkin County, Colorado. Environmental and Engineering Geoscience 1: 277290.Google Scholar
Mortara, G. & Sorzana, P.F., 1987. Fenomeni di deformazione gravitativa profonda nell’arco alpino occidentale italiano. Considerazioni lito-strutturali e morfologiche. Bollettino della Società Geologica Italiana 106: 303314.Google Scholar
Onida, M., Mirto, C., Stucchi, M., Galadini, F. & Leschiutta, I., 2000b. Tettonica attiva e sismicità nelle Alpi Centrali. In: Galadini, F., Meletti, C. & Rebez, A. (eds.): Ricerche del GNDT nel campo della pericolosità sismica (1996–1999). Special Publication of CNR-GNDT, Gruppo Nazionale per la Difesa dai Terremoti, Roma: 93104.Google Scholar
Orombelli, G., 1983. Il Pleistocene superiore in Italia – I depositi glaciali. Geografia Fisica e Dinamica Quaternaria 6: 179180.Google Scholar
Radbruch-Hall, D., 1978. Gravitational creep of rock masses on slopes. In: Voight, B. (Ed.). Rockslides and Avalanches, 1. Developments in Geotechnical Engineering. Elsevier, Amsterdam: 607657.Google Scholar
Radbruch-Hall, D., Varnes, D.J. & Savage, W.Z., 1976. Gravitational spreading of steep-sided ridges (“Sackung”) in Western United States. Bulletin of the International Association of Engineering Geology 14: 2335.Google Scholar
Schaer, J.P. & Jeanrichard, F., 1974. Mouvements varticaux anciens et actuels dans les Alpes suisses. Eclogae Geologicae Helvetiae 67: 101119.Google Scholar
Sorriso-Valvo, M., 1995. Considerazioni sul limite tra deformazione gravitativa profonda di versante e frana. Memorie della Società Geologica Italiana 50: 179185.Google Scholar
Stewart, I.S., Sauber, J. & Rose, J., 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews 19: 13671389.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J. & Spurk, M., 1998. INTCAL 98 Radiocarbon Age Calibration, 24,000–0 cal BP. Radiocarbon 40: 10411084.Google Scholar
Working Group CPTI, 1999. Catalogo paramétrico dei terremoti italiani. ING, GNDT, SGA SSN, Bologna: 92 pp.Google Scholar
Wu, P., Johnston, P. & Lambeck, K., 1999. Postglacial rebound and fault instability in Fennoscandia. Geophysical Journal International 139: 657670.Google Scholar
Zischinsky, U., 1966. On the deformation of high slopes. In: Proceedings of the 1st Conference of the International Society of Rock Mechanics, Lisbon: 179185.Google Scholar