Skip to main content Accessibility help
×
Home

An empirical relationship for the seismic activity rate of the Groningen gas field

  • Marc H.H. Hettema (a1), Bastiaan Jaarsma (a1), Barthold M. Schroot (a1) and Guido C.N. van Yperen (a1)

Abstract

The Groningen field is the largest onshore gas field in Europe. Continuous production since 1963 has led to induced seismicity starting in the early 1990s. Production measures aimed at lowering the level of seismicity have been implemented since 2014. In this paper we start from an empirical relationship between the cumulative number of seismic events and cumulative gas production. We show that a better way to analyse the data is to relate the ratio of activity rate over production rate versus the cumulative production, such that the model parameters and their uncertainty can be determined. This also allows us to make predictions including the confidence intervals.

Using this model, we first performed regression analysis based on the larger seismic catalogue which includes all recorded events with a magnitude of 1.3 and larger, because we consider this value to be the magnitude of completeness since 1995. We have also performed regression analysis based on a smaller seismic catalogue consisting of all events with a magnitude of 1.5 and larger. This was done in order to be able to compare our forecast with forecasts performed by others. Our prediction for 2016, based on the seismic catalogue of all events with a magnitude of M≥1.5 (using only the events recorded before 2016), was 16±8 events. By the end of 2016, 13 such events had been recorded.

We discuss a number of factors which may influence the predictive power of the derived relationship and which require further study. For instance, we consider the delay between production and earthquakes which increases with decreasing reservoir pressure. In addition, the effect of seasonal fluctuation in Groningen production should be considered. Future work can be done to include these effects in the empirical model. We also investigated the challenges related to the applicability of the analysis to sub-regions of the Groningen field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An empirical relationship for the seismic activity rate of the Groningen gas field
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An empirical relationship for the seismic activity rate of the Groningen gas field
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An empirical relationship for the seismic activity rate of the Groningen gas field
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author. Email: marc.hettema@ebn.nl

References

Hide All
Bierman, S., Paleja, R. & Jones, M., 2015. Statistical methodology to test for evidence of seasonal variation in rates of earthquakes in the Groningen field. Open access via https://nam-feitenencijfers.data-app.nl/download/rapport/d2c650cb-6713-4b36-a7a7-d5a84d9f12b7?open=true.
Bourne, S.J. & Oates, S.J., 2015a. An activity rate model of induced seismicity within the Groningen Field (part 1), NAM report. Available at www.nam.nl/feiten-en-cijfers/gaswinning.html.
Bourne, S.J. & Oates, S.J., 2015b. An activity rate model of induced seismicity within the Groningen Field (part 2), NAM report. Available at www.nam.nl/feiten-en-cijfers/gaswinning.html.
de Jager, J. & Geluk, M.C., 2007. Petroleum geology. In: Wong, Th.E., Batjes, D.A.J. & de Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (Amsterdam): 241264.
Dost, B. & Haak, H.W., 2007. Natural and induced seismicity. In: Wong, Th.E., Batjes, D.A.J. & de Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (Amsterdam): 223239
Dost, B., Goutbeek, F., Van Eck, T. & Kraaijpoel, D., 2012. Monitoring induced seismicity in the North of the Netherlands: status report 2010. Scientific Report; WR 2012-03. Royal Netherlands Meteorological Institute (KNMI) (De Bilt).
Hagoort, J., 1988. Fundamentals of gas reservoir engineering. Elsevier Science (Amsterdam): 340 pp.
Hagoort, J., 2015. Aardbevingen in Groningen: statistiek en risicoanalyse. Ruimtelijke Veiligheid en Risicobeleid 6 (19).
Hettema, M.H.H., Papamichos, E. & Schutjens, P.M.T.M., 2002. Subsidence delay: field observations and analysis. Oil & Gas Science and Technology, Revue d'IFP 57 (5): 443458.
KNMI, 2017. www.knmi.nl (Royal Netherlands Meteorological Institute, website from KNMI). Website accessed and seismicity data downloaded on 11 January 2017.
Kortekaas, M. & Jaarsma, B., 2017. Improved definition of faults in the Groningen field using seismic attributes. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Levine, D.M., Ramsey, P.P. & Smidt, R.K., 2001. Applied statistics for engineers and scientists. Prentice Hall (New York): 671 pp.
Muntendam-Bos, A.G. & de Waal, J.A., 2013. Reassessment of the probability of higher magnitude earthquakes in the Groningen gas field. SodM (National Mines Inspectorate) report: 33 pp. Open access via https://www.rijksoverheid.nl/documenten/rapporten/2013/01/16/reassessment-of-the-probability-of-higher-magnitude-earthquakes-in-the-groningen-gas-field.
NAM, 2016a. Winningsplan Groningen Gasveld 2016. Nederlandse Aardolie Maatschappij BV (Assen). Available at www.nam.nl/feiten-en-cijfers/gaswinning.html.
NAM, 2016b. Technical Addendum to the Winningsplan Groningen 2016. Nederlandse Aardolie Maatschappij BV (Assen). Available at www.nam.nl/feiten-en-cijfers/gaswinning.html.
NAM, 2016c. Supplement to the Technical Addendum for Winningsplan Groningen 2016. Nederlandse Aardolie Maatschappij BV (Assen). Available at www.nam.nl/feiten-en-cijfers/gaswinning.html.
NAM, 2017. Groningen Meet- en Regelprotocol. Open access via https://www.nam.nl/nieuws/2017/sodm-keurt-groningen-meet-en-regelprotocol-goed.html.
Nepveu, M., van Thienen-Visser, K. & Sijacic, D., 2016. Statistics of seismic events at the Groningen Field. Bulletin of Earthquake Engineering 14: 33433362.
Pijpers, F., 2016. A phenomenological relationship between reservoir pressure and tremor rates in Groningen. Scientific paper, Statistics Netherlands. Open access via https://www.sodm.nl/documenten/publicaties/2016/06/21/24-phenomenological-relationship-between-reservoir-pressure-and-tremor-rates.
van Eck, T., Goutbeek, F., Haak, H. & Dost, B., 2006. Seismic hazard due to small-magnitude, shallow source, induced earthquakes in the Netherlands. Engineering Geology 87: 105121.
Van Thienen-Visser, K. & Breunese, J.N., 2015. Induced seismicity of the Groningen gas field: history and recent develoments. The Leading Edge, June:664–671.
Van Thienen-Visser, K., Sijacic, D., Nepveu, M., Van Wees, J.D. & Hettelaar, J., 2015. Response of induced seismicity to production changes in the Groningen field. TNO report 2015 R11367. TNO – Geological Survey of the Netherlands (Utrecht).
Van Thienen-Visser, Sijacic, D., Nepveu, M., Van Wees, J.D., Kraaijpoel, & Roholl, J., 2016. Groningen field 2013 to present – gas production and induced seismicity. TNO report 2016 R10425. TNO – Geological Survey of the Netherlands (Utrecht).

Keywords

An empirical relationship for the seismic activity rate of the Groningen gas field

  • Marc H.H. Hettema (a1), Bastiaan Jaarsma (a1), Barthold M. Schroot (a1) and Guido C.N. van Yperen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed