Skip to main content Accessibility help
×
Home

Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments

  • D. Maljers (a1), J. Stafleu (a1), M.J. van der Meulen (a1) and R.M. Dambrink (a1)

Abstract

Aggregate resource assessments, derived from three subsequent generations of voxel models, were compared in a qualitative way to illustrate and discuss modelling progress. We compared the models in terms of both methodology and usability. All three models were produced by the Geological Survey of the Netherlands. Aggregate is granular mineral material used in building and construction, and in this case consists of sand and gravel. On each occasion ever-increasing computer power allowed us to model at a higher resolution and use more geological information to constrain interpolations. The two oldest models, built in 2005 and 2007, were created specifically for aggregate resource assessments, the first as proof of concept, the second for an online resource information system. The third model was derived from the ongoing multipurpose systematic 3D modelling programme GeoTOP. We used a study area of 40 × 40 km located in the central Netherlands, which encompasses a section of the Rhine-Meuse delta and adjacent glacial terrains to the north. Aggregate resource assessments rely on the extent to which the occurrence and grain size of sand and gravel are resolved, and on proper representation of clay and peat layers (overburden and intercalations) that affect exploitability. Average model properties (e.g. total aggregate content) are about the same in all three models, except for a difference resulting from converting older lithological classifications to the current one. This difference illustrates that data selection and preparation are paramount, especially when dealing with quality issues. Generally speaking the results of the aggregate resource assessments are consistent and satisfactory for all three models, provided that they are judged at the appropriate scale. However, the assessments based on GeoTOP best approach the desired scale of use for the aggregates industry; in that sense progress was significant and each model was a better fit for the purpose.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Email: denise.maljers@tno.nl

References

Hide All
Anonymous, 1989. NEN 5104:1989, Geotechnics; Classification of unconsolidated soil samples. Netherlands Normalisation Institute (Delft): 24 pp.
Anonymous, 1990. NEN 5104:1989/C1, Geotechnics; Classification of unconsolidated soil samples (amendment). Netherlands Normalisation Institute (Delft): 1 pp.
Anonymous, 2001. Code for reporting of mineral exploration results, mineral resources and mineral reserves (the reporting code). Institution of Mining and Metallurgy (London), European Federation of Geologists (Brussels), Geological Society of London, Institute of Geologists of Ireland (Dublin): 34 pp.
Anonymous, 2004. United Nations framework classification for fossil energy and mineral resources. United Nations Economic Commission for Europe (Geneva): 25 pp.
Anonymous, 2008. Pan-European code for reporting of exploration results, mineral resources and reserves (“the PERC reporting code”). Pan-European Reserves and Resources Reporting Committee (PERC): Institution of Mining and Metallurgy (London), European Federation of Geologists (Brussels), Geological Society of London, Institute of Geologists of Ireland (Dublin): 51 pp.
Berendsen, H.J.A., 2007. History of geological mapping of the Holocene Rhine-Meuse delta, the Netherlands. Netherlands Journal of Geosciences 86: 165177.
Berendsen, H.J.A & Stouthamer, E., 2000. Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, The Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology 161: 311335.
Berendsen, H.J.A & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, The Netherlands. Koninklijke Van Gorcum BV (Assen): 268 pp.
Bos, I.J. & Stouthamer, E., 2011. Spatial and temporal distribution of sand-containing basin fills in the Holocene Rhine-Meuse Delta, the Netherlands. Journal of Geology 119: 641660.
Busschers, F.S., Weerts, H.J.T., Wallinga, J., Kasse, C., Cleveringa, P., De Wolf, H. & Cohen, K.M., 2005. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits – fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands Journal of Geosciences 84: 2541.
Busschers, F.S., Kasse, C., van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P. & Bunnik, F.P.M., 2007. Late Pleistocene evolution of the Rhine in the southern North-Sea Basin: Imprints of climate change, sea-level oscillations and glacio-isostacy. Quaternary Science Reviews 26: 32163248.
Chilès, J.P. & Delfiner, P., 2012. Geostatistics: Modeling Spatial Uncertainty, 2nd edn.Wiley (Hoboken NJ): 699 pp.
Cohen, K. & Stouthamer, E., 2012. Digitaal Basisbestand Paleogeografie van de Rijn-Maas Delta. Digital dataset, persistent identifier urn:nbn:nl:ui:13-nqjn-zl.
de Mulder, E.F.J., Geluk, M.C., Ritsema, I., Westerhoff, W.E. & Wong, Th. E., 2003. De ondergrond van Nederland. Wolters Noordhof (Groningen): 379 pp.
Goovaerts, P., 1997. Geostatistics for natural resources evaluation. Oxford University Press (Oxford): 483 pp.
Gouw, M.J.P., 2007. Alluvial architecture of fluvio-deltaic successions: a review with special reference to Holocene settings. Netherlands Journal of Geosciences 86: 211227.
Gouw, M.J.P. & Erkens, G., 2007. Architecture of the Holocene Rhine-Meuse delta (the Netherlands) – A result of changing external controls. Netherlands Journal of Geosciences 86: 2354.
Gunnink, J.L., Maljers, D., Gessel, S.F., van, Menkovic, A. & Hummelman, H.J., 2013. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands. Netherlands Journal of Geosciences 92: 3346.
Soares, A., 1992. Geostatistical estimation of multi-phase structure. Mathematical Geology 24: 149160.
Stafleu, J., Maljers, D., Gunnink, J.L., Menkovic, A. & Busschers, F.S., 2011. 3D modelling of the shallow subsurface of Zeeland, the Netherlands. Netherlands Journal of Geosciences 90: 293310.
Stafleu, J., Maljers, D., Busschers, F.S., Gunnink, J.L., Schokker, J., Dambrink, R.M., Hummelman, H.J. & Schijf, M.L., 2012. GeoTOP modellering (GeoTOP modelling, in Dutch). TNO report TNO 2012 R10991: 216 pp.
TNO, 2014a. Delfstoffen online (minerals online), http://www.delfstoffenonline.nl.
TNO, 2014b. Dinoloket (internet portal for Dutch geodata and information), http://www.dinoloket.nl.
van der Meulen, M.J., 2005. Sustainable mineral development: possibilities and pitfalls illustrated by the rise and fall of Dutch mineral planning guidance. In: Petterson, M., McEvoy, F. & Marker, B.R. (eds): Sustainable minerals operations in the developing world. Geological Society of London (UK), Special Publications 250: 225232.
van der Meulen, M.J., van Gessel, S.F. & Veldkamp, J.G., 2005. Aggregate resources in the Netherlands. Netherlands Journal of Geosciences 84: 379387.
van der Meulen, M.J., Broers, J.W., Hakstege, A.L., Pietersen, H.S., Van Heijst, M.W.I.M. & Koopmans, T.P.F., 2007a. Surface mineral resources. In: Wong, T.E., Batjes, D.A.J. & de Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (Amsterdam): 317333.
van der Meulen, M.J., Maljers, D., van Gessel, S.F. & Gruijters, S.H.L.L., 2007b. Clay resources in the Netherlands. Netherlands Journal of Geosciences 86: 117130.
van der Meulen, M.J., van der Spek, A.J.F., de Lange, G., Gruijters, S.H.L.L., van Gessel, S.F., Nguyen, B.L., Maljers, D., Schokker, J., Mulder, J.P.M. & van der Krogt, R.A.A., 2007c. Regional sediment deficits in the Dutch Lowlands: implications for long-term land-use options. Journal of Soils and Sediments 7: 916.
van der Meulen, M.J., Doornenbal, J.C., Gunnink, J.L., Stafleu, J., Schokker, J., Vernes, R.W., van Geer, F.C., van Gessel, S.F., van Heteren, S., van Leeuwen, R.J.W., Bakker, M.A.J., Bogaard, P.J.F., Busschers, F.S., Griffioen, J., Gruijters, S.H.L.L., Kiden, P., Schroot, B.M., Simmelink, H.J., van Berkel, W.O., van der Krogt, R.A.A., Westerhoff, W.E. & van Daalen, T.M., 2013. 3D geology in a 2D country: perspectives for geological surveying in the Netherlands. Netherlands Journal of Geosciences 92: 217241.
Vos, P.C., Bazelmans, J.G.A., Weerts, H.J.T. & van der Meulen, M.J. (eds), 2011. Atlas van Nederland in het Holoceen – Landschap en bewoning sinds de laatste IJstijd (in Dutch). Promotheus/Bert Bakker (Amsterdam): 94pp.

Keywords

Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments

  • D. Maljers (a1), J. Stafleu (a1), M.J. van der Meulen (a1) and R.M. Dambrink (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed