Skip to main content Accessibility help
×
Home

3D modelling of the shallow subsurface of Zeeland, the Netherlands

  • J. Stafleu (a1), D. Maljers (a1), J.L. Gunnink (a1), A. Menkovic (a1) and F.S. Busschers (a1)...

Abstract

The Geological Survey of the Netherlands aims at building a 3D geological voxel model of the upper 30 m of the subsurface of the Netherlands in order to provide a sound basis for subsurface related questions on, amongst others, groundwater extraction and management, land subsidence studies, aggregate resources and infrastructural issues. The Province of Zeeland (SW Netherlands, covering an area of approximately 70 by 75 km) was chosen as the starting point for this model due to an excellent dataset of 23,000 stratigraphically interpreted borehole descriptions.

The modelling procedure involved a number of steps. The first step is a geological schematisation of the borehole descriptions into units that have uniform sediment characteristics, using lithostratigraphical, lithofacies and lithological criteria. During the second modelling step, 2D bounding surfaces are constructed. These surfaces represent the top and base of the lithostratigraphical units and are used to place each voxel (100 by 100 by 0.5 metres) in the model within the correct lithostratigraphical unit. The lithological units in the borehole descriptions are used to perform a final 3D stochastic interpolation of lithofacies, lithology (clay, sand, peat) and if applicable, sand grain-size class within each lithostratigraphical unit. After this step, a three-dimensional geological model is obtained. The use of stochastic techniques such as Sequential Gaussian Simulation and Sequential Indicator Simulation, allowed us to compute probabilities for lithostratigraphy, lithofacies and lithology for each voxel, providing a measure of model uncertainty.

The procedures described above resulted in the first fully 3D regional-scale lithofacies model of the shallow subsurface in the Netherlands. The model provides important new insights on spatial connectivity of sediment units of, for example, sandy Holocene tidal channel systems. Our results represent a major step forward towards a fully 3D voxel model of the Netherlands.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      3D modelling of the shallow subsurface of Zeeland, the Netherlands
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      3D modelling of the shallow subsurface of Zeeland, the Netherlands
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      3D modelling of the shallow subsurface of Zeeland, the Netherlands
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Beets, D.J. & Van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and the back-barrier basins of Belgium and The Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 316.
Bosch, J.H.A., 2000. Standaard Boor Beschrijvingsmethode. Netherlands Institute of Applied Geosciences TNO, Report NITG 00-141-A.
Bogaert, P., 2002. Spatial prediction of categorical variables: the Bayesian maximum entropy approach. Stochastic Environmental Research and Risk Assessment SERRA, 6, 6: 425448.
Doppert, J.W.Chr, Ruegg, G.H.J., Van Staalduinen, C.J., Zagwijn, W.H. & Zandstra, J.G., 1975. Formaties van het Kwartair en Boven-Tertiair in Nederland. In: Zagwijn, W.H. & Van Staalduinen, C.J. (eds): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst, Haarlem: 1156.
Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, 483 pp.
Hageman, B.P., 1963. De profieltype-legenda van de nieuwe geologische kaart voor het zeeklei- en rivierkleigebied. Tijdschrift voor het Koninklijk Nederlands Aardrijkskundig Genootschap, Tweede Reeks 80: 217229.
Hageman, B.P., 1964. Blad Goeree en Overflakkee, Toelichting bij de Geologische Kaart van Nederland, 1: 50.000. Rijks Geologische Dienst Haarlem, 89 pp.
Hageman, B.P., 1969. Development of the western part of the Netherlands during the Holocene. Geologie en Mijnbouw 48, 373388.
Kasse, C., 1988. Early Pleistocene tidal and fluvial environments in the southern Netherlands and northern Belgium. Ph.D. dissertation, Vrije Universiteit Amsterdam, 190 pp.
Kiden, P., 1995. Holocene relative sea-level change and crustal movement in the southwestern Netherlands. Marine Geology, 124: 2141.
Kooi, H., Johnston, P., Lambeck, K., Smither, C. & Molendijk, R., 1998. Geological causes of recent (~100 yr) vertical land movement in the Netherlands. Tectonophysics, 299, 297316.
Miall, A.D., 1999. Principles of sedimentary basin analysis (3rd ed.). Springer, Berlin, 616 pp.
Soares, A., 1992. Geostatistical estimation of multi-phase structure. Mathematical Geology 24: 149160.
Schokker, J. & Weerts, H.J.T., 2004. Afzettingsmilieus en faciëseenheden van de Tertiaire en Kwartaire lithostratigrafische eenheden in de ondergrond van Nederland. Netherlands Institute of Applied Geosciences TNO, Report 03-194-A, 31 pp.
Schokker, J., Weerts, H.J.T., Westerhoff, W.E., Berendsen, H.J.A. & Den Otter, C., 2007. Introduction of the Boxtel Formation and implications for the Quaternary lithostratigraphy of the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 86: 197210.
Strebelle, S., 2002. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology, 34: 121.
Van der Meulen, M.J., Van Gessel, S.F. and Veldkamp, J.G., 2005. Aggregate resources in the Netherlands. Netherlands Journal of Geosciences, 84: 379387.
Van der Meulen, M.J., Maljers, D., Van Gessel, S.F. & Gruijters, S.H.L.L., 2007. Clay resources in the Netherlands. Netherlands Journal of Geosciences, 86: 117130.
Van Rummelen, F.F.F.E., 1965. Zeeuwsch Vlaanderen, Bladen Zeeuwsch Vlaanderen, West en Oost, Toelichting bij de Geologische Kaart van Nederland, 1: 50.000. Rijks Geologische Dienst Haarlem, 79 pp.
Van Rummelen, F.F.F.E., 1972. Blad Walcheren, Toelichting bij de Geologische kaart van Nederland 1:50.000. Rijks Geologische Dienst, Haarlem, 120 pp.
Vernes, R.W., Hummelman, H.J. & Menkovic, A., 2010. REGIS Zeeland, Deelrapport B: Hydrogeologische opbouw en hydraulische eigenschappen van Holocene afzettingen. TNO, Report 034-UT-2010-01647/A, 74 pp.
Vernes, R.W. & Van Doorn, Th.H.M., 2005. Van Gidslaag naar Hydrogeologische Eenheid – Toelichting op de totstandkoming van de dataset REGIS II. Netherlands Institute of Applied Geosciences TNO, Report 05-038-B, 105 pp.
Vos, P.C., 1992. Toelichting kaartblad 43/49 West en 49 Oost – Concept toelichting 43/49 West: Holocene deel. Dienstrapport 1454, Rijks Geologische Dienst, Haarlem, 41 pp.
Vos, P.C. & Van Heeringen, R.M., 1997. Holocene geology and occupation history of the Province of Zeeland. In: Fischer, M.M. (ed.): Holocene evolution of Zeeland (SW Netherlands), 5110.
Weerts, H.J.T., Westerhoff, W.E., Cleveringa, P., Bierkens, M.F.P., Veldkamp, J.G. and Rijsdijk, K.F., 2005. Quaternary geological mapping of the lowlands of the Netherlands, a 21st century perspective. Quaternary International, 133–134: 159178.
Westerhoff, W.E., 2009. Stratigraphy and sedimentary evolution. The lower Rhine-Meuse system during the Late Pliocene and Early Pleistocene (southern North Sea Basin). Ph.D. dissertation, Vrije Universiteit Amsterdam, 168 pp.
Westerhoff, W.E., Wong, Th.E. & Geluk, M.C., 2003. De opbouw van de ondergrond. In: De Mulder, E.F.J., Geluk, M.C., Ritsema, I., Westerhoff, W.E. & Wong, Th.E. (eds): De ondergrond van Nederland. Nederlands Instituut voor Toegepaste Geowetenschappen TNO, Geologie van Nederland 7: 247352.
Ziegler, P.A., 1990. Geological atlas of Western and Central Europe. 3rd edition, Shell International Petroleum Maatschappij B.V., Geological Society, Bath, 239 pp.
Ziegler, P.A., 1994. Cenozoic rift system of western and central Europe: an overview, Geologie en Mijnbouw 73: 99127.

Keywords

3D modelling of the shallow subsurface of Zeeland, the Netherlands

  • J. Stafleu (a1), D. Maljers (a1), J.L. Gunnink (a1), A. Menkovic (a1) and F.S. Busschers (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed