Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T21:31:33.161Z Has data issue: false hasContentIssue false

Riemannian Manifolds with Discontinuous Metrics and the Dirichlet Integral

Published online by Cambridge University Press:  22 January 2016

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider a relatively compact region Ω of a Riemann surface R. The term Dirichlet integral over Ω, DΩ(·), is used for the variation whose Euler-Lagrange equation is Δu = 0 on Ω and the term energy integral over Ω, , is used for the variation with Euler-Lagrange equation

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1972

References

[1] Brelot, M., Lectures on potential theory, Tata Institute of Fundamental Research, Bombay, 1960.Google Scholar
[2] Katz, M. Glasner—R., On the behavior of solutions of Δu = pu at the Royden boundary, J. d’Analyse Math., 22 (1969), 345354.Google Scholar
[3] Glasner, M., Dirichlet mappings of Riemannian manifolds and the equation Δu = pu, J. Diff. Equations, 9 (1971), 390404.CrossRefGoogle Scholar
[4] Glasner, M., Manifolds without Green’s formula, (to appear).Google Scholar
[5] Hervé, R., Quelques propriétés des sursolutions et sursolutions locales d’une equation uniformément elliptique de la Lu = , Ann. Inst. Fourier, Grenoble 16 (1966), 241267.CrossRefGoogle Scholar
[6] Hervé, R. Hervé—M., Les fonctions surharmoniques associées a un opérateur elliptique du second ordre a coefficients discontinus, Ann. Inst. Fourier, Grenoble 19 (1968), 305359.CrossRefGoogle Scholar
[7] Littman—G., W. Weinberger, Stampacchia—H., Regular points for elliptic equations with discontinuous coefficients, Ann. Scoula Norm. Sup. Pisa, 17 (1963), 4377.Google Scholar
[8] Loeb, P.A., An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, Grenoble 16 (1966), 167208.CrossRefGoogle Scholar
[9] Walsh, P.A. Loeb—B., The equivalence of Harnack’s principle and Harnack’s inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, Grenoble 15 (1965), 597600.Google Scholar
[10] Maeda, F.-Y., Introduction to a potential theory on a differentiable manifold, Lecture notes, Kyoto University, October 1968.Google Scholar
[11] Moser, J., On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577591.CrossRefGoogle Scholar
[12] Nakai, M., The space of bounded solutions of the equation Δu = Pu on a Riemann surface, Proc. Japan Acad., 36 (1960), 267272.Google Scholar
[13] Nakai, M., A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J., 17 (1960), 181218.CrossRefGoogle Scholar
[14] Nakai, M., The space of Dirichlet finite solutions of the equations Δu = Pu on a Riemann surface, Nagoya Math. J. 18 (1961), 111131.CrossRefGoogle Scholar
[15] Nakai, M., On parabolicity and Royden compactifications of Riemannian manifolds, Proc. International conference on functional analysis and related topics, Tokyo, 1969.Google Scholar
[16] Nakai, M., Royden algebras and quasi-isometries of Riemannian manifolds, Pacific J. Math, (to appear).Google Scholar
[17] Nakai, M., Dirichlet finite solutions of Δu = Pu, and classification of Riemann surfaces, Bull. Amer. Math. Soc, 77 (1971) 381385.CrossRefGoogle Scholar
[18] Nakai, M., Dirichlet finite solutions of Δu = Pu on open Riemann surfaces, Kôdai Math. Sem. Rep, 23 (1971), 385397.Google Scholar
[19] Royden, H.L., The equation Δu = Pu and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI 271 (1959).Google Scholar
[20] Royden, H.L., The growth of a fundamental solution of an elliptic divergence structure equation, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif. (1962), 333340.Google Scholar
[21] Nakai, L. Sario—M., Classification Theory of Riemann Surfaces, Springer-Verlag, 1970.Google Scholar
[22] Stampacchia, G., Le problême de Dirichlet pour les équations elliptiques du second ordre à coeffficients discontinus, Ann. Inst. Fourier, Grenoble 15 (1965) 187258.Google Scholar
[23] Yosida, K., Functional Analysis, Springer-Verlag, 1965. H. Fujimoto Nagoya Math. J. Vol. 46 (1972), 4961 Google Scholar