Skip to main content Accessibility help
×
Home

ON THE MODIFIED FUTAKI INVARIANT OF COMPLETE INTERSECTIONS IN PROJECTIVE SPACES

  • RYOSUKE TAKAHASHI (a1)

Abstract

Let $M$ be a Fano manifold. We call a Kähler metric ${\it\omega}\in c_{1}(M)$ a Kähler–Ricci soliton if it satisfies the equation $\text{Ric}({\it\omega})-{\it\omega}=L_{V}{\it\omega}$ for some holomorphic vector field $V$ on $M$ . It is known that a necessary condition for the existence of Kähler–Ricci solitons is the vanishing of the modified Futaki invariant introduced by Tian and Zhu. In a recent work of Berman and Nyström, it was generalized for (possibly singular) Fano varieties, and the notion of algebrogeometric stability of the pair $(M,V)$ was introduced. In this paper, we propose a method of computing the modified Futaki invariant for Fano complete intersections in projective spaces.

Copyright

References

Hide All
[AV11]Arezzo, C. and Vedova, A. D., On the K-stability of complete intersections in polarized manifolds, Adv. Math. 226 (2011), 47964815.
[BBEGZ11]Berman, R. J., Boucksom, S., Eyssidieux, P., Guedj, V. and Zeriahi, A., Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, Preprint, 2011, arXiv:1111.7158.
[BGV92]Berline, N., Getzler, E. and Vergne, M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) 298Springer, Berlin, 1992.
[BN14]Berman, R. J. and Nyström, D. W., Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons, Preprint, 2014, arXiv:1401.8264.
[CDS15]Chen, X., Donaldson, K. and Sun, S., Kähler–Einstein metrics on Fano manifolds, III: limit as cone angle approach 2𝜋 and completion of the main proof, J. Amer. Math. Soc. 28 (2015), 235278.
[DT92]Ding, W. Y. and Tian, G., Kähler–Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), 315335.
[Fut83]Futaki, A., An obstruction to the existence of Kähler–Einstein metrics, Invent. Math. 73 (1983), 437443.
[Hou08]Hou, Z., Equivariant cohomology and holomorphic invariant, Commun. Contemp. Math. 100 (2008), 433447.
[Liu95]Liu, K., Holomorphic equivariant cohomology, Math. Ann. 303 (1995), 125148.
[Lu99]Lu, Z., On the Futaki invariants of complete intersections, Duke Math. J. 100 (1999), 359372.
[Lu03]Lu, Z., A note on the holomorphic invariants of Tian–Zhu, Port Math. 60 (2003), 263268.
[PS04]Phong, D. H. and Sturm, J., The Futaki invariant and the Mabuchi energy of a complete intersection, Comm. Anal. Geom. 12 (2004), 321343.
[Tian15]Tian, G., K-stability and Kähler–Einstein metrics, Comm. Pure Appl. Math. 68 (2015), 10851156.
[TZ02]Tian, G. and Zhu, X. H., A new holomorphic invariant and uniqueness of Kähler–Ricci solitons, Comment. Math. Helv. 77 (2002), 297325.
[WZZ14]Wang, F., Zhou, B. and Zhu, X., Modified Futaki invariant and equivariant Riemann–Roch formula, Preprint, 2014, arXiv:1408.3784.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

ON THE MODIFIED FUTAKI INVARIANT OF COMPLETE INTERSECTIONS IN PROJECTIVE SPACES

  • RYOSUKE TAKAHASHI (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed