Skip to main content Accessibility help


  • DAVID BURNS (a1)


We investigate the Galois structures of $p$ -adic cohomology groups of general $p$ -adic representations over finite extensions of number fields. We show, in particular, that as the field extensions vary over natural families the Galois modules formed by these cohomology groups always decompose as the direct sum of a projective module and a complementary module of bounded $p$ -rank. We use this result to derive new (upper and lower) bounds on the changes in ranks of Selmer groups over extensions of number fields and descriptions of the explicit Galois structures of natural arithmetic modules.



Hide All
[1] Atiyah, M. F. and Wall, C. T. C., “ Cohomology of groups ”, Algebraic Number Theory, (eds. Cassels, J. W. S. and Fröhlich, A.) Academic Press, London, 1967, 94115.
[2] Bloch, S. and Kato, K., “ L-functions and Tamagawa numbers of motives ”, in The Grothendieck Festschrift, Vol. I, Progress in Mathematics 86 , Birkhäuser, 1990, 333400.
[3] Burns, D., On the Galois structure of arithmetic cohomology III: Selmer groups of critical motives , Kyoto J. Math. 58 (2018), 671693.
[4] Burns, D. and Flach, M., Motivic L-functions and Galois module structures , Math. Ann. 305 (1996), 65102.
[5] Burns, D. and Flach, M., Equivariant Tamagawa numbers for motives with (non-commutative) coefficients , Doc. Math. 6 (2001), 501570.
[6] Burns, D. and Kumon, A., On the Galois structure of arithmetic cohomology II: ray class groups , J. Math. Soc. Japan 70 (2018), 481517.
[7] Burns, D., Macias Castillo, D. and Wuthrich, C., On the Galois structure of Selmer groups , Int. Math. Res. Not. 2015 (2015), 1190911933.
[8] Curtis, C. W. and Reiner, I., Methods of Representation Theory, Vol. I, John Wiley, New York, 1987.
[9] Deligne, P., Seminaire de Geometrie Algebrique du Bois-Marie, SGA 4 1/2, Lecture Note Math. 569 , Springer, New York, 1977.
[10] Diederichsen, F. E., Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz , Abh. Math. Sem. Univ. Hamburg 14 (1940), 357412.
[11] Flach, M., Euler characteristics in relative K-groups , Bull. Lond. Math. Soc. 32 (2000), 272284.
[12] Heller, A. and Reiner, I., Representations of cyclic groups in rings of integers. I , Ann. of Math. (2) 76 (1962), 7392.
[13] Heller, A. and Reiner, I., Representations of cyclic groups in rings of integers. II , Ann. of Math. (2) 77 (1963), 318328.
[14] Iwasawa, K., “ On the 𝜇-invariants of ℤ -extensions ”, in Number Theory, Algebraic Geometry and Commutative Algebra, Kinokuniya, Tokyo, 1973, 111.
[15] Khare, C. and Wintenberger, J.-P., Ramification in Iwasawa theory and splitting conjectures , Int. Math. Res. Not. 2014 (2014), 194223.
[16] Milne, J. S., Étale Cohomology, Princeton University Press, Princeton, 1980.
[17] Neukirch, J., On solvable extensions of number fields , Invent. Math. 53 (1979), 135164.
[18] Rzedowski-Calderón, M., Villa Salvador, G. D. and Madan, M. L., Galois module structure of rings of integers , Math. Z. 204 (1990), 401424.
[19] Verdier, J. L., Des Catégories Dérivées des Catégories Abéliennes, Asterisque 239 , Société Mathématique de France, Montrouge, 1996.
[20] Washington, L. C., Introduction to Cyclotomic Fields, Graduate Texts in Mathematics 83 , Springer, Berlin, 1982.
[21] Weibel, C., The norm residue isomorphism theorem , J. Topol. 2 (2009), 346372.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed