Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T12:07:48.189Z Has data issue: false hasContentIssue false

On Elliptic Curves with Complex Multiplication as Factors of the Jacobians of Modular Function Fields

Published online by Cambridge University Press:  22 January 2016

Goro Shimura*
Affiliation:
Princeton University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. As Hecke showed, every L-function of an imaginary quadratic field K with a Grössen-character γ is the Mellin transform of a cusp form f(z) belonging to a certain congruence subgroup Γ of SL2(Z). We can normalize γ so that

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1971

References

[1] Deuring, M., Die Zetafunktion einer algebraischen Kurve vom Geschlecht Eins, I, II, III, IV, Nachr. Akad. Wiss. Göttingen, (1953) 8594, (1955) 1342, (1956) 3776, (1957) 5580.Google Scholar
[2] Hecke, E., Zur Theorie der elliptischen Modulfunktionen, Math. Ann., 97 (1926), 210242 (-Math. Werke, 428460).CrossRefGoogle Scholar
[3] Hecke, E., Bestimmung der Perioden gewisser Integrale durch die Theorie der Klassenkörper, Math. Zeitschr., 28 (1928), 708727 (=Math. Werke, 505524).CrossRefGoogle Scholar
[4] Hecke, E., Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung I, II, Math. Ann., 114 (1937), 128, 316351 (=Math. Werke, 644707).CrossRefGoogle Scholar
[5] Shimura, G., Correspondances modulaires et les fonctions C de courbes algébriques, J. Math. Soc. Japan, 10 (1958), 128.Google Scholar
[6] Shimura, G., On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math., 78 (1963), 149192.CrossRefGoogle Scholar
[7] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, No. 11, 1971.Google Scholar
[8] Shimura, G., On the zeta-function of an abelian variety with complex multiplication, to appear.Google Scholar
[9] Weil, A., Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., 168 (1967), 149156.Google Scholar