Skip to main content Accessibility help
×
Home

Locally trivial fibrations with singular 1-dimensional Stein fiber over q-complete spaces

  • Mihnea Colţoiu (a1) and Viorel Vâjâitu (a2)

Abstract

In connection with Serre’s problem, we consider a locally trivial analytic fibration π : EB of complex spaces with typical fiber X. We show that if X is a Stein curve and B is q-complete, then E is q-complete.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Locally trivial fibrations with singular 1-dimensional Stein fiber over q-complete spaces
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Locally trivial fibrations with singular 1-dimensional Stein fiber over q-complete spaces
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Locally trivial fibrations with singular 1-dimensional Stein fiber over q-complete spaces
      Available formats
      ×

Copyright

References

Hide All
[1] Andreotti, A. and Grauert, H., Théorèmes definitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193259.
[2] Ballico, E., Coverings of complex spaces and q-completeness, Riv. Mat. Univ. Parma, (4), 7 (1981), 443452.
[3] Coeuré, G. and Loeb, J.J., A counterexample to the Serre problem with a bounded domain of C2 as fiber, Annals of Math., 122 (1985), 329334.
[4] Colţoiu, M., Complete pluripolar sets, J. reine angew. Math., 412 (1992), 108112.
[5] Colţoiu, M., n-concavity of n-dimensional complex spaces, Math. Z., 210 (1992), 203206.
[6] Colţoiu, M., q-convexity. A survey., In: Complex analysis and geometry, Pitman Research Notes in Mathematics Series, 366 (1997), 8393.
[7] Demailly, J.-P.,, Un example de fibre holomorphe non de Stein à fibre C2 ayant pour base le disque ou le plan, Invent. Math., 48 (1978), 293302.
[8] Demailly, J.-P.,, Cohomology of q-convex spaces in top degrees, Math. Z., 204 (1990), 283295.
[9] Hirschowitz, A., Domaines de Stein et fonctions holomorphes bornées, Math. Ann., 213 (1975), 185193.
[10] Kobayashi, S., Hyperbolic manifolds and holomorphic mappings, New York, Marcel Dekker, 1970.
[11] Lang, S., Introduction to complex hyperbolic spaces, Springer Verlag, 1987.
[12] Barz, P. Le, A propos des revêtements ramifiés d’espace de Stein, Math. Ann., 222 (1976), 6369.
[13] Mok, N., The Serre problem on Riemann surfaces, Math. Ann., 258 (1981), 145168.
[14] Narasimhan, R., A note on Stein spaces and their normalizations, Ann. Sc. Norm. Sup. Pisa, 16 (1962), 327333.
[15] Peternell, M., Algebraische Varietäten und q-vollständige komplexe Räume, Math. Z., 200 (1989), 547581.
[16] Royden, H., Holomorphic fiber bundles with hyperbolic fiber, Proc. A.M.S., 43 (1974), 311312.
[17] Serre, J.-P.,, Quelques problèmes globaux relatifs aux variétés de Stein, Colloque sur les fonctions de plusieurs variables, Bruxelles (1953), 5368.
[18] Sibony, N., Fibrés holomorphes et métrique de Carathéodory, C.R.A.S., 279 (1974), 261264.
[19] Siu, Y.-T.,, All plane domains are Banach-Stein, Manuscripta math., 14 (1974), 101105.
[20] Siu, Y.-T.,, Holomorphic fibre bundles whose fibers are bounded Stein domains with zero first Betti number, Math. Ann., 219 (1976), 171192.
[21] Skoda, H., Fibres holomorphes à base et à fibre de Stein, Invent. Math., 43 (1977), 97107.
[22] Stehlé, J.-L., Fonctions plurisousharmoniques et convexité holomorphe dans certain fibres analytiques, Lecture Notes in Math., 474 Sém. P. Lelong 1973/74, 155180.
[23] Stein, K., Uberlagerungen holomorph vollständiger komplexer Räume, Arch. Math., 7 (1956), 354361.
[24] Vâjâitu, V., Approximation theorems and homology of q-Runge pairs in complex spaces, J. reine angew. Math., 449 (1994), 179199.
[25] Vâjâitu, V., Some convexity properties of proper morphisms of complex spaces, Math. Z., 217 (1994), 215245.
[26] Vâjâitu, V., One dimensional fibering over q-complete spaces, Nagoya Math. J, 151 (1998), 99106.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Locally trivial fibrations with singular 1-dimensional Stein fiber over q-complete spaces

  • Mihnea Colţoiu (a1) and Viorel Vâjâitu (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed