Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-g7stk Total loading time: 5.387 Render date: 2021-04-13T05:58:49.992Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The Calogero-Moser partition for G(m, d, n)

Published online by Cambridge University Press:  11 January 2016

Gwyn Bellamy
Affiliation:
School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, Gwyn.Bellamy@Manchester.ac.uk
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

We show that it is possible to deduce the Calogero-Moser partition of the irreducible representations of the complex reflection groups G(m,d, n) from the corresponding partition for G(m,1,n). This confirms, in the case W = G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-Moser partition to Rouquier families for the corresponding cyclotomic Hecke algebra.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2012

References

[B] Bellamy, G., On singular Calogero-Moser spaces, Bull. Lond. Math. Soc. 41, no. 2 (2009), 315326.CrossRefGoogle Scholar
[BBR] Bessis, D., Bonnafé, C., and Rouquier, R., Quotients et extensions de groupes de r éflexion, Math. Ann. 323 (2002), 405436.CrossRefGoogle Scholar
[BK] Broué, M. and Kim, S., Familles de caractères des algèbres de Hecke cyclotomiques, Adv. Math. 172 (2002), 53136.CrossRefGoogle Scholar
[BMR] Broué, M., Malle, G., and Rouquier, R., Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127190.Google Scholar
[BG] Brown, K. A. and Gordon, I. G., The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras, Math. Z. 238 (2001), 733779.CrossRefGoogle Scholar
[BGS] Brown, K. A., Gordon, I. G., and Stroppel, C. H., Cherednik, Hecke and quantum algebras as free Frobenius and Calabi-Yau extensions, J. Algebra 319 (2008), 10071034.CrossRefGoogle Scholar
[CH1] Chlouveraki, M., Rouquier blocks of the cyclotomic Ariki-Koike Hecke algebras, Algebra Number Theory 2 (2008), 689720.CrossRefGoogle Scholar
[CH2] Chlouveraki, M., Blocks and Families for Cyclotomic Hecke Algebras, Lecture Notes in Math. 1981, Springer, Berlin, 2009.Google Scholar
[CH3] Chlouveraki, M., Rouquier blocks of the cyclotomic Hecke algebras of G(de,e,r), Nagoya Math J. 197 (2010), 175212.CrossRefGoogle Scholar
[Co] Cohen, A. M., Finite complex reflection groups, Ann. Sci. Ec. Norm. Supér. (4) 9 (1976), 379436.CrossRefGoogle Scholar
[CR] Curtis, C. W. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras, Pure and Appl. Math. XI, Interscience, New York, 1962.Google Scholar
[EG] Etingof, P. and Ginzburg, V., Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243348.CrossRefGoogle Scholar
[GP] Geck, M. and Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Monogr. (N. S.) 21, Oxford University Press, New York, 2000.Google Scholar
[G1] Gordon, I. G., Baby Verma modules for rational Cherednik algebras, Bull. Lond. Math. Soc. 35 (2003), 321336.CrossRefGoogle Scholar
[G2] Gordon, I. G., Quiver varieties, category O for rational Cherednik algebras, and Hecke algebras, Int. Math. Res. Pap. IMRP 2008, no. 3. art. ID rpn006.Google Scholar
[GM] Gordon, I. G. and Martino, M., Calogero-Moser space, restricted rational Cherednik algebras and two-sided cells, Math. Res. Lett. 16 (2009), 255262.CrossRefGoogle Scholar
[JK] James, G. D. and Kerber, A., The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl. 16, Addison-Wesley, Reading, MA, 1981.Google Scholar
[Ki] Kim, S., Families of the characters of the cyclotomic Hecke algebras of G(ed, d, r), J. Algebra 289 (2005), 346364.Google Scholar
[M] Martino, M., The Calogero-Moser partition and Rouquier families for complex reflection groups, J. Algebra 323 (2010), 193205.CrossRefGoogle Scholar
[Re] Read, E. W., On the finite imprimitive unitary reflection groups, J. Algebra, 45 (1977), 439452.CrossRefGoogle Scholar
[Rot] Rotman, J. J., An Introduction to Homological Algebra, 2nd ed., Springer, New York, 2009.Google Scholar
[ST] Shephard, G. C. and Todd, J. A., Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274304.CrossRefGoogle Scholar
[Sp] Specht, W., Eine Verallgmeinerung der symmetrischen Gruppe, Sch. Math. Semin. (Berlin) 1 (1932), 132.Google Scholar
[Ste] Stembridge, J. R., On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140, (1989), 353396.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 83 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Access Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Calogero-Moser partition for G(m, d, n)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Calogero-Moser partition for G(m, d, n)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Calogero-Moser partition for G(m, d, n)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *