Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T19:28:30.598Z Has data issue: false hasContentIssue false

Analytic structure of Schläfli function

Published online by Cambridge University Press:  22 January 2016

Kazuhiko Aomoto*
Affiliation:
University of Tokyo
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note it is shown that Schläfli function can be simply expressed in terms of hyperlogarithmic functions, namely iterated integrals of forms with logarithmic poles in the sense of K. T. Chen (Theorem 1). It is also discussed the relation between Schläfli function and hypergeometric ones of Mellin-Sato type (Theorem 2). From a combinatorial point of view the structure of hyperlogarithmic functions seem very interesting just as the dilog log (so-called Abel-Rogers function) has played a crucial part in Gelfand-Gabriev-Losik’s formula of 1st Pontrjagin classes. See also [3].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1977

References

[1] Aomoto, K., Les equations aux differences lineaires et les integrates des fonctions multiformes, J. Fac. Sci. Univ. Tokyo, 22 (1975), 271297.Google Scholar
[2] Aomoto, K., Une remarque sur la solution des equations de Schlesinger et Lapp-Danilevski II (to be submitted to J. Fac. Sci. Univ. Tokyo).Google Scholar
[3] Cheeger, J. and Simons, J., Differential characters and geometric invariants (preprint).Google Scholar
[4] Chen, K. T., Iterated integrals of differential forms and loop space homology, Ann. of Math. 97 (1973), 217246.Google Scholar
[5] Chen, K. T., Iterated integrals, Fundamental groups and Covering Spaces, Trans. Amer. Math. Soc. 206 (1975), 8398.Google Scholar
[6] Coxeter, H. S. M., The functions of Schläfli and Lobatschefsky, Quart. J. Math. 6 (1935), 1329.Google Scholar
[7] Deligne, P., Theorie de Hodge II, Publ. Math. I.H.E.S. 40 (1971), 558.Google Scholar
[8] Hopf, H., Die curvatura integra Clifford-Kleinseher Raumformen, Nach. v.d. Ges. d. Wiss., Gottingen, Mathem-physik. K.L. 1925.Google Scholar
[9] Iitaka, S., Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo 23 (1976), 525544.Google Scholar
[10] Kneser, H., Der Simplexinhalt in der nichteuklidischen Geometrie, Deutsch. Math. 1 (1936), 337340.Google Scholar
[11] Poincare, H., Sur la generalisation d’un theoreme elementaire de geometrie, Comptes rendus T. 140 (1905), 113117.Google Scholar
[12] Maier, W. und Effenberger, A., Additive Inhaltmasse im positiv gekrummten Raum, Aeq. Math. 2 (1968), 304318.Google Scholar
[13] Parsin, A. N., A generalization of Jacobian variety, Izv. Akad. Nauk. SSSR Ser. Mat. 30 (1966), 175182.Google Scholar
[14] Sato, M., Singular orbits in prehomogeneous vector spaces, Lee. Notes at Univ. of Tokyo, 1972.Google Scholar
[15] Schläfli, L., On the multiple integral ∫∫…∫dxdydz whose limits are p1 = a1z + b1y + … + hz > 0, p2 > 0, …, pn > 0, and x2 + y 2 + … + z 2 < 1, Quart. J. of Math. 3 (1860), 5468, 97108.Google Scholar