[B78]
Bell, G., On the cohomology of finite special linear groups I and II, J. Algebra, 54 (1978), 216–238 and 239–259.
[B84]
Borcherds, R., The Leech lattice and other lattices, Ph.D. Thesis, Cambridge (1984).
[Cp82]
Cameron, P. J. and Praeger, C. E., Graphs and permutation groups with projective subconstituents, J. London Math. Soc. (2), 25 (1982), 62–74.
[Ch99]
Ching, K., Graphs with projective linear stabilizers, Europ. J. Combin., 20 (1999), 29–44.
[ATLAS]
Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[DS85]
Delgado, A. and Stellmacher, B., Weak (B,N)-pairs of rank 2, Groups and Graphs: New Results and Methods, Birkhäuser, Basel (1985), pp. 58–244.
[DM80]
Djoković, D. Z. and Miller, G. L., Regular groups of automorphisms of cubic graphs, J. Combin. Theory (B), 29 (1980), 195–230.
[GAP]
The GAP Group, , GAP – Groups, Algorithms, and Programming, Version 4.2, Aachen, St. Andrews, 1999. (http://www-gap.dcs.st-and.ac.uk/~gap)
[Iv87]
Ivanov, A. A., On 2-transitive graphs of girth 5, Europ. J. Combin., 8 (1987), 393–420.
[Iv90]
Ivanov, A. A., The distance-transitive graphs admitting elations, Math. USSR Izvestiya Math., 35 (1990), 307–335.
[Iv92]
Ivanov, A. A., A presentation for J4
, Proc. London Math. Soc. (3), 64 (1992), 369–396.
[Iv93]
Ivanov, A. A., Graphs with projective subconstituents which contain short cycles, Surveys in Combinatorics (Walker, K., ed.), Cambridge Univ. Press, Cambridge (1993), pp. 173–190.
[Iv99]
Ivanov, A. A., Geometry of Sporadic Groups I. Petersen and Tilde Geometries, Cambridge Univ. Press, Cambridge, 1999.
[Iv04]
Ivanov, A. A., The Fourth Janko Group, Clarendon Press, Oxford, 2004.
[IM99]
Ivanov, A. A. and Meierfrankenfeld, U., A computer-free construction of J4
, J. Algebra, 219 (1999), 113–172.
[IP04]
Ivanov, A. A. and Pasechnik, D. V., Minimal representation of locally projective amalgams, J. London Math. Soc., 70 (2004), 142–164.
[IP98]
Ivanov, A. A. and Praeger, C. E., On locally projective graphs of girth 5, J. Algebraic Comb., 7 (1998), 259–283.
[IS02]
Ivanov, A. A. and Shpectorov, S. V., Geometry of Sporadic Groups II.
Representations and Amalgams, Cambridge Univ. Press, Cambridge, 2002.
[Ja73]
James, G., The modular characters of the Mathieu groups, J. Algebra, 27 (1973), 57–111.
[JP76]
Jones, W. and Parshall, B., On the 1-cohomology of finite groups of Lie type, Proc. Conf. on Finite Groups (Scott, W. R. and Gross, F., eds.), Acad. Press, San Diego (1976), pp. 313–327.
[K87]
Karpilovsky, G., The Schur Multipliers, Oxford Univ. Press, Oxford, 1987.
[K60]
Kurosh, A. G., The Theory of Groups. II, Chelsea, New York, 1960.
[MS93]
Meierfrankenfeld, U. and Stellmacher, B., Pushing up weak BN-pairs of rank two, Comm. Algebra, 21 (1993), 825–934.
[P94]
Pasini, A., Diagram Geometries, Clarendon Press, Oxford, 1994.
[SW88]
Stroth, G. and Weiss, R., Modified Steinberg relations for the group J4
, Geom. Dedic., 25 (1988), 513–525.
[Tim84]
Timmesfeld, F. G., Amalgams with rank 2 groups of Lie type in characteristic 2, preprint, Math. Inst. Univ. Giessen (1984).
[Tr91a]
Trofimov, V. I., Stabilizers of the vertices of graphs with projective suborbits, Soviet Math. Dokl., 42 (1991), 825–828.
[Tr91b]
Trofimov, V. I., More on vertex stabilizers of the symmetric graphs with projective subconstituents, Int. Conf. Algebraic Combin., Vladimir, USSR (1991), pp. 36–37, (Russian).
[Tr92]
Trofimov, V. I., Graphs with projective suborbits, Russian Acad. Sci. Izv. Math., 39 (1992), 869–894.
[Tr95a]
Trofimov, V. I., Graphs with projective suborbits. Cases of small characteristics. I, Russian Acad. Sci. Izv. Math., 45 (1995), 353–398.
[Tr95b]
Trofimov, V. I., Graphs with projective suborbits. Cases of small characteristics. II, Russian Acad. Sci. Izv. Math., 45 (1995), 559–576.
[Tr98]
Trofimov, V. I., Graphs with projective suborbits. Exceptional cases of characteristic 2. I, Izv. Math., 62 (1998), 1221–1279.
[Tr00]
Trofimov, V. I., Graphs with projective suborbits. Exceptional cases of characteristic 2. II, Izv. Math., 64 (2000), 173–192.
[Tr01]
Trofimov, V. I., Graphs with projective suborbits. Exceptional cases of characteristic 2. III, Izv. Math., 65 (2001), 787–822.
[Tr03a]
Trofimov, V. I., Vertex stabilizers of locally projective groups of automorphisms of graphs. A summary, Groups, combinatorics and geometry (Durham, 2001) (Ivanov, A. A., Liebeck, M. W. and Saxl, J., eds.), World Sci. Publishing, River Edge, NJ (2003), pp. 313–326.
[Tr03b]
Trofimov, V. I., Graphs with projective suborbits. Exceptional cases of characteristic 2. IV, Izvestiya Akad. Nauk, Mat., 67 (2003), 193–222, (Russian).
[Tu47]
Tutte, W., A family of cubical graphs, Proc. Camb. Phil Soc., 43 (1947), 459–474.
[W77]
Weiss, R., Über symmetrische Graphen und die projektiven Gruppen, Arch. Math., 28 (1977), 110–112.
[W78]
Weiss, R., Symmetric graphs with projective subconstituents, Proc. Amer. Math. Soc., 72 (1978), 213–217.
[W79]
Weiss, R., Groups with a (B, N)-pair and locally transitive graphs, Nagoya Math. J., 74 (1979), 1–21.
[W81]
Weiss, R., s-Transitive graphs, Algebraic Methods in Graph Theory, North Holland, Amsterdam (1981), pp. 827–847.
[W82]
Weiss, R., Graphs with subconstituents containing L3(p), Proc. Amer. Math. Soc., 85 (1982), 666–672.