Rapid thermal annealing (RTA), with fast ramp up and down rates, was performed on several Cu(In,Ga)Se2 (CIGS) films and solar cells under various peak annealing temperatures and holding times. The XRD, SEM, Hall- effect, photo J-V, and quantum efficiency (Q-E) measurements were made on CIGS films and cells before and after RTA treatments to study the effects of RTA on the CIGS film properties and cell performance. The results show that RTA treatments under optimal annealing condition can provide significant improvements in the electrical properties (resistivity, carrier concentration, and mobility) of CIGS films and cell performance while preserving the film composition and microstructure morphology.