Skip to main content Accessibility help
×
Home

Zone-Specific Changes in Micromechanical, Biochemical, and Structural Properties in Articular Cartilage from a Rabbit Joint Flexion Model

  • Cheng Li (a1), Karen B. King (a2) and Lisa A. Pruitt (a3)

Abstract

Metacarpophalangeal (MCP) joint proximal bone-cartilage specimens from the fourth digit were collected from repetitively flexed and non-flexed (control) paws of four New Zealand White rabbits. The specimens were cryo-fractured to reveal a sagittal cut containing the cartilage zones of different collagen microstructure. Nanoindentation, Fourier Transform infrared microspectroscopic imaging (FTIRMI), and histology were performed on a region of interest (ROI) ∼400 microns wide and through the thickness of the cartilage with two goals in mind: (1) to examine the effect of collagen network structure (random in the mid zone versus organized in the deep zone) on the biomechanical and biochemical properties of cartilage; and (2) to understand the changes in these properties due to physical forces. We found that zone microstructure significantly affected the measurement of the local relaxed modulus measured by nanoindentation. The deep zone had a higher modulus than the mid zone (Wilcoxon paired test, p<0.05). We also found that flexion significantly decreased the proteoglycan content in both the mid and deep zones (Wilcoxon paired test, p<0.05), suggesting indirect repetitive loading in the rabbit paw can be damaging to the joint via down regulating proteoglycan synthesis in the mid and deep zone cartilage. This is the first study to simultaneously report the local zone-specific mechanical and biochemical properties in the rabbit joint flexion model.

Copyright

References

Hide All
1 King, K. B., Opel, C. F. and Rempel, D. M., “Cyclical articular joint loading leads to cartilage thinning and osteopontin production in a novel in vivo rabbit model of repetitive finger flexion,” Osteoarthritis Cartilage 13 (11), 971978 (2005). Begin typing text here.
2 Li, C., Pruitt, L. A. and King, K. B., “Nanoindentation differentiates tissue-scale functional properties of native articular cartilage,” J.Biomed.Mater.Res.A. 78 (4), 729738 (2006)
3 Camacho, N. P. et al., “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62 (1), 18 (2001).
4 Gwynn, I. ap et al., “Novel aspects to the structure of rabbit articular cartilage,” Eur.Cell.Mater. 4, 1829 (2002).
5 Saadat, E. et al., “Long-term cyclical in vivo loading increases cartilage proteoglycan content in a spatially specific manner: an infrared microspectroscopic imaging and polarized light microscopy study,” Arthritis Res.Ther. 8 (5), R147 (2006).
6 Saadat, E. et al., “The effect of frequency and force of in vivo loading of proteoglycan content of rabbit articular cartilage,” Transactions of the 54th Annual Meeting of the Orthopaedic Research Society, (2008).

Keywords

Related content

Powered by UNSILO

Zone-Specific Changes in Micromechanical, Biochemical, and Structural Properties in Articular Cartilage from a Rabbit Joint Flexion Model

  • Cheng Li (a1), Karen B. King (a2) and Lisa A. Pruitt (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.