Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-25T05:39:22.682Z Has data issue: false hasContentIssue false

Zone Melting Recrystallization of Patterned Films and Low-Temperature Graphoepitaxy

Published online by Cambridge University Press:  22 February 2011

Henry I. Smith
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
C.V. Thompson
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
M.W. Geis
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
H. Atwater
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
T. Yonehara
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
C.C. Wong
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Get access

Abstract

Zone melting recrystallization (ZMR) of Si films on SiO2 has produced large-area films with electrical properties approaching those of bulk wafers. The mechanisms of film formation and the use of patterning to control orientation and defect distribution are briefly reviewed. Some examples of the use of patterning are: single-grain films have been produced by means of planar constrictions; subboundaries and impurities have been entrained to lie along straight lines separated by ∼100μm through the use of lithographically defined grating patterns; a vertical-constriction technique has enabled (100) texture to be achieved in 50μm-thick Si films; a lithographically-defined orientation filter, which takes advantage of growth-velocity anisotropy, has been used to select a predetermined azimuthal orientation.

Patterning is also fundamental to graphoepitaxy. Current research emphasizes low temperature processes based on solid-state surface-energy-driven secondary grain growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(a)

Department of Electrical Engineering and Computer Science

(b)

Department of Materials Science and Engineering

(c)

Lincoln Laboratory, Lexington, MA 02173

(d)

Center for Advanced Engineering Study

References

REFERENCES

1.Smith, H.I., Geis, M.W., Thompson, C.V. and Atwater, H.A., J. Crystal Growth 63, 527 (1983).Google Scholar
2.Geis, M.W., Smith, H.I., Tsaur, B.Y., Fan, I.C.C., Maby, E.W. and Antoniadis, D.A., Appl. Phys. Lett. 40, 158 (1982).Google Scholar
3.Geis, M.W., Smith, H.I., Tsaur, B.Y., Fan, J.C.C., Silversmith, D.J. and Mountain, R.W., J. Electrochem. Soc. 129, 2812 (1982).Google Scholar
4.Atwater, H.A., Smith, H.I., Thompson, C.V., Geis, M.W., to be published, Materials Lett.Google Scholar
5.Geis, M.W., Smith, H.I., Silversmith, D.J., Mountain, R.W. and Thompson, C.V., J. Electrochem. Soc. 130, 1178 (1983).Google Scholar
6.Flemings, M., ‘Solidification Processing’, McGraw-Hill Book Co., New York, 1974, p. 5893,Google Scholar
6a. [see Chapter 3, “Cellular Precipitation”].Google Scholar
7.Yablonovitch, E., to be published, J. Electrochem. Soc.Google Scholar
8.Colinge, J.P., Demoulin, E., Bensahel, D. and Auvert, G., App. Phys. Letters 41, 346 (1982).Google Scholar
9.Haond, M., Vu, D.P., Bensahel, D., J. Appl. Phys. 54, 3892 (1983).Google Scholar
10.Keavney, C.J., Atwater, H.A., Smith, H.I. and Geis, M.W., “Zone-Melting Recrystallization of InSb on Oxidized Silicon Wafers”, Electrochemical Society Symposium on III-V Opto-Electronics Epitaxy and Device-Related Processes, San Francisco, May 1983, Eds. Keramides, V.G. and Mahajan, S.;Google Scholar
10a. also Keavney, C.J., MS Thesis, MIT, Cambridge, MA (1983), reprinted as VLSI memo 83–143.Google Scholar
11.Wong, C.C., Keavney, C.J., Atwater, H.A., Thompson, C.V. and Smith, H.I., “Zone Melting Recrystallization of InSb Films on Oxidized Si Wafers”, presented at MRS Symposium, Boston, MA, November 1983.Google Scholar
11a. To be published in Materials Research Society Symposia Proceedings, 'Energy Beam-Solid Interactions and Transient Thermal Processing', Elsevier Science Publishing Co., Eds. Johnson, N.M., Fan, J.C.C. (These Proceedings).Google Scholar
12.Biegelsen, D.K., Johnson, N.M., Bartelink, D.J., Moyer, M.D., in Laser and Electron Beam Solid Interactions and Materials Processing, Ed. Gibbons, J.F., Hess, L.D., and Sigmon, T.W. (Elsevier, North Holland, New York, 1981) p. 487.Google Scholar
13.Biegelsen, D.K., Johnson, N.M., Bartelink, D.J. and Moyer, M.D., Appl. Phys. Letters 38, 150 (1981).Google Scholar
14.Johnson, N.M., Tuan, H.C., Moyer, M.D., Thompson, M.J., Biegelsen, D.K., Fennell, L.F. and Chiang, A., in Laser Solid Interaction and Transient Thermal Processing of Materials, Ed. Narayan, J., Brown, W.L., Lemons, R.A. (Elsevier, North Holland, New York, 1983) p. 605.Google Scholar
15.Atwater, H.A., Smith, H.I. and Geis, M.W., Appl. Phys. Letters 41, 747 (1982);Google Scholar
15a.Smith, H.I., Atwater, H.A. and Geis, M.W., 161st Electrochem. Soc. Meeting, Montreal, Canada, 1982, Electrochem. Soc. Extended Abstracts 82–1 (1982) p. 257.Google Scholar
16.Atwater, H.A., MS Thesis, MIT, Cambridge, MA (1983);Google Scholar
16a. also published as VLSI Memo 83–149, July 1983.Google Scholar
17.Atwater, H.A., Thompson, C.V., Smith, H.I. and Geis, M.W., Appl. Phys. Lett. 43, 1126 (1983);Google Scholar
17a. also Electronic Materials ConferenceBurlingtonJune, 1983Google Scholar
18.Filby, J.D. and Nielsen, S., Brit. J. Appl. Phys. 18, 1357 (1967) see p. 1380.Google Scholar
19.Sheftal, N.N. and Buzynin, A.N., Vestn. Mosk. Univ. 3, 102 (1972).Google Scholar
19a. Translation available from National Translation Center, The John Crerar Library, 35 W. 33rd St., Chicago, IL 60616, USA; translation NTC-83–122 00.Google Scholar
20.Sheftal, N.N. and Klykov, V.I., in Abstracts 5th Conf. on Crystal GrowthTbilisiSept. 1977 Vol. 1, p. 31. Translation available from National Translation Center, The John Crerar Library, 35 W. 33rd St., Chicago, IL 60616, USA; translation NTC-837–122 01.Google Scholar
21.Klykow, V.I. and Sheftal, N.N., J. Crystal Growth 52, 687 (1981).Google Scholar
22.Flanders, D.C. and Smith, H.I., Proc. Symp. on Electron, Ion and Photon Beam Technology, Palo Alto, CA, May 1977;Google Scholar
22a.Flanders, D.C. and Smith, H.I., J. Vac. Sci. Technol. 15, 1001 (1978).Google Scholar
23.Flanders, D.C., PhD Thesis, MIT, Cambridge, MA (1978); reprinted as MIT Lincoln Laboratory Technical Report 533, 1978.Google Scholar
24.Flanders, D.C., Shaver, D.C. and Smith, H.I., Appl. Phys. Letters 32, 597 (1978);Google Scholar
24a.Shaver, D.C., MS Thesis, MIT. Cambridge, MA (1978); reprinted as MIT Lincoln Laboratory Technical Report 538, 1979.Google Scholar
25.Geis, M.W., Flanders, D.C. and Smith, H.I., Appl. Phys. Letters 35, 71 (1979);Google Scholar
25a.Geis, M.W., Antoniadis, D.A., Silversmith, D.J., Mountain, R.W. and Smith, H.I., Appl. Phys. Letters 37, 454 (1980).Google Scholar
26.Smith, H.I., Thompson, C.V., Geis, M.W., Lemons, R.A., Bosch, M.A., J. Electrochem. Soc. 130, 2050 (1983).Google Scholar
27.Anton, R., Poppa, H. and Flanders, D.C., J. Crystal Growth 56, 433 (1982).Google Scholar
28.Smith, H.I. and Flanders, D.C., Appl. Phys. Letters 32, 349 (1978).Google Scholar
29.Darken, L.S. and Lowndes, D.J., Appl. Phys. Letters 40, 954 (1982);Google Scholar
29a.Darken, L.S., 161st Electrochem. Soc. Meeting, Montreal, Canada, 1982, Electrochem. Soc. Extended Abstracts 82–1 (1982) p. 248;Google Scholar
29b.Darken, L.S., J. Electrochem. Soc. 130, 1274 (1983).Google Scholar
30.Thompson, C.V. and Smith, H.I., Appl. Phys. Lett., to be published March, 1984.Google Scholar
31.Yonehara, T., Thompson, C.V., Smith, H.I., to be published in Materials Research Society Symposia Proceedings, ‘Thin Films and Interfaces’, Baglin, J.E.E. and Campbell, D.R., editors, Elsevier Science Publishing Co., 1984.Google Scholar