Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T00:14:50.728Z Has data issue: false hasContentIssue false

[ZnSe(dbn)1/2] and [ZnSe(hda)1/2]: Two New Members of Inorganic-Organic Hybrid Semiconductor Nanocomposites Exhibiting A Strong Quantum Confinement Effect

Published online by Cambridge University Press:  01 February 2011

Xiaoying Huang
Affiliation:
Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
Jing Li
Affiliation:
Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
Get access

Abstract

Two new inorganic-organic hybrid II-VI semiconductor nanostructures have been synthesized by solvothermal reactions. These nanostructures consist of inorganic 2[ZnSe] layers and organic bridging diamine molecules as spacers. The crystal structures of [ZnSe(dbn)1/2](1, dbn = 1,4-diaminobutane) and [ZnSe(hda)1/2](2, hda = 1,6-hexanediamine) have been determined by the powder X-ray diffraction method. They are isostructural and crystallize in the orthorhombic crystal system, space group Pbca(No.62), Z = 4. Crystal data for 1: a = 6.646(3), b = 6.473(3), c = 22.31(1) Å, V = 961.2(13) Å3, for 2: a = 6.6252(18), b = 6.4505(17), c = 27.138(7) Å, V = 1159.8(9) Å3. The optical absorption experiments show that both 1 and 2 generate a very large blue shift in the absorption edge (1.5-1.6 eV) due to a strong quantum confinement effect (QCE). Thermogravimetric behavior of both compounds has also been investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993). A. P. Alivisatos, Science 271, 933 (1996); S. A. Empedocles, D. J. Norris, M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996); T. Trindade, P. O'Brien, N. L. Picket, Chem. Mater. 13, 3843 (2001).Google Scholar
2. Marzin, J. Y., Gerard, J. M., Izrael, A., Bastard, G., Phys. Rev. Lett. 73, 716 (1994).Google Scholar
3. Huang, X.Y., Li, J., Fu, H., J. Am. Chem. Soc. 122, 8789 (2000).Google Scholar
4. Huang, X.Y., Heulings, H. R. IV, Le, V., Li, J., Chem. Mater. 13, 3754 (2001).Google Scholar
5. Heulings, H. R. IV, Huang, X.Y., Li, J., Nano Lett. 1, 521 (2001).Google Scholar
6. Werner, P.E., Eriksson, L., Westdahl, M., J. Appl. Crystallogr. 18, 367 (1985).Google Scholar
7. Dong, C., J. Appl. Crystallogr. 32, 838 (1999).Google Scholar
8. Huang, X.Y., Li, J., Unpublished results.Google Scholar
9. Altomare, A., Burla, M. C., Cascarano, G., Guagliardi, A., Moliterni, A.G. G., Polidori, G., J. Appl. Crystallogr. 28, 842 (1995).Google Scholar
10. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., , A.G.G., Burla, M. C., Polidori, G., Camalli, M., J. Appl. Crystallogr. 27, 435 (1994).Google Scholar
11. Larson, A.C., Dreele, R. B. Von, GSAS, Generallized Structure Analysis System, Los Alamos National Laboratory: Los Alamos, NM (1994).Google Scholar
12. Li, J., Chen, Z., Wang, X.X., Proserpio, D. M., J. Alloys Compd. 262-263, 28 (1997).Google Scholar