Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T22:16:46.648Z Has data issue: false hasContentIssue false

ZnO Nanowire Based Photoconductor with High Photoconductive Gain

Published online by Cambridge University Press:  23 July 2015

Bhargav Mallampati
Affiliation:
Department of Physics, University of North Texas, Denton, TX 76203, U.S.A
S. V. Nair
Affiliation:
Centre for Advanced Nanotechnology, University of Toronto, Toronto M5S 3E3, Canada.
H. E. Ruda
Affiliation:
Centre for Advanced Nanotechnology, University of Toronto, Toronto M5S 3E3, Canada.
U. Philipose
Affiliation:
Department of Physics, University of North Texas, Denton, TX 76203, U.S.A
Get access

Abstract

A high gain ZnO nanowire (NW) based photodetector was fabricated, which was sensitive to photoexcitation at or below 370 nm corresponding to the band-edge of ZnO. At an incident wavelength of 370 nm and a bias field of 5 kV/cm, the maximum responsivity was over 105 A/W corresponding to an extremely high photoconductive gain of the order of 106. Through this work we provide experimental evidence of the role of surface and defects in carrier dynamics, resulting in enhanced photoresponse. Using intensity and temperature dependence of the rise and decay rates of photocurrent, we present a detailed analysis that provides an estimate of the activation energies of carrier trapping mechanisms.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bao, J., Shalish, I., Su, Z., Gurwitz, R., Capasso, F., Wang, X. and Ren, Z., Nanosc. Res. Lett. 6, 404 (2011).CrossRefGoogle Scholar
Bera, A., Ghosh, T. and Basak, D., Appl. Mat. and Interfaces 2, 2893 (2010).Google Scholar
Li, Q. H., Liang, Y. X., Wan, Q. and Wang, T. H., Appl. Phys. Lett. 85, 6389 (2004).CrossRefGoogle Scholar
Studenikin, S. A., Golego, N., Cocivera, M., J. Appl. Phys. 87, 2413 (2000).CrossRefGoogle Scholar
Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P., Park, J., Bao, X. Y., Lo, Y. H., and Wang, D., Nano Lett. 7, 1003 (2007).CrossRefGoogle Scholar
Jellison, G. E. Jr. and Boatner, L. A., Phys. Rev. B58, 3586 (1998).CrossRefGoogle Scholar
Rose, A., Concepts in Photoconductivity and Allied Problems (Krieger, New York, 1978).Google Scholar
Hou, D., Dev, A., Frank, K., Rosenauer, A., and Voss, T., J. Phys. Chem. 116, 19604 (2012).CrossRefGoogle Scholar
Mallampati, B., Nair, S. V., Ruda, H. E. and Philipose, U., J. Nano. Res. (in press).Google Scholar
Prades, J. D., Jimenez-Diaz, R., Hernandez-Ramirez, F., Fernandez-Romero, L., Andreu, T., Cirera, A., Romano-Rodriguez, A., Cornet, A., Morante, J. R., Barth, S., and Mathur, S., J. Phys. Chem. C 112, 14639 (2008).CrossRefGoogle Scholar
Chen, R. S., Wang, W. C., Chan, C. H., Lu, M. L., Chen, Y. F., Lin, H. C., Chen, K. H., and Chen, L. C., App. Phys. Lett. 103, 223107 (2013).CrossRefGoogle Scholar