Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-22T09:53:28.387Z Has data issue: false hasContentIssue false

XRD Study of the Influence of Heat Treatment on the Microstructure of Sol-Gel Processed ZrO2-Y2O3 Ceramics

Published online by Cambridge University Press:  21 February 2011

C. Barrera-Solano
Affiliation:
Dpto. de Fisica de la Materia Condensada.
M. PiÑero
Affiliation:
Dpto. de Fisica de la Materia Condensada.
C. Jiménez-Solís
Affiliation:
Dpto. de Fisica de la Materia Condensada.
L. Gago-Duport
Affiliation:
Dpto. de Ciencia de los Materiales e Ingeniería Metalúrgica y Quimica Inorgánica., Universidad de Cádiz, Apdo.40 Pto. Real (Cadiz). Spain
Get access

Abstract

YSZ samples containing 5 and 10 mol% of Y203 were prepared by controlled hydrolysis of metal alkoxides. The dried powders were calcined at 800°C and then they were uniaxially pressed and sintered at different temperatures and next heated at 1400°C (∼ 5 MPa) or annealed at 1600°C for 24 h. The quantitative analysis of the experimental X-ray diffraction (XRD) spectra was performed by Whole Pattern Fitting (WPF). A Pseudo-Voigt (Thompson-Cox-Hastings) was used as shape profile function. The respective phase fractions (wt %) were fitted for both solid state solutions using the scale factor. The heat treatment induced changes are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lange, F.F., J. Mat. Sci. 17, 240246 (1982).Google Scholar
2 Gupta, T.K., Bechtold, J.H., Kuznicki, R.C., Cadoff, L.H. and Rossing, B.R., J. Mat. Sci. 12, 24212426 (1977).Google Scholar
3 Scott, H.G., J. Mat. Sci. 10, 15271535 (1975).Google Scholar
4 Paterson, A. and Stevens, R., J. Mater. Sci., 1, 295–99 (1986).Google Scholar
5 Schmidt, H.K., J. Am. Ceram. Soc, 70, 367–76 (1987).Google Scholar
6 Sánchez-Bajo, F., Cumbrera, F.L., Guiberteau, F. and Domínguez-Rodríguez, A., Mater. Letters, 15, 3945 (1992).Google Scholar
7 Howard, S.A. and Preston, K.D. in Modem Power Diffraction, edited by Bish, D.L. & Post, J.E. (The Mineralogical Society America, Washington, D.C. 1989), p. 217272.Google Scholar
8 Pawley, G.S., J. Appl. Cryst., 14, 357361 (1981).Google Scholar
9 Barrera-Solano, C.. Ph. D. Thesis. Universidad de Cádiz. Spain. (1994).Google Scholar
10 Rodríguez, J., Anne, M. and Pannetier, J. in A System for Time-Resolved Data Analysis (Powder Diffraction Pattern). (ILL Internal Report 87R014T 1987).Google Scholar
11 Marquardt, D.W., J.Soc.Indust.Appl.Math., 11, 431–37 (1963).Google Scholar
12 Teufer, G., Act. Cryst., 15, 1187 (1965).Google Scholar
13 Smith, D.K. and Newtirk, H.W., Act. Cryst., 18, 983991 (1965).Google Scholar
14 Smith, D.K. and Cline, CF., J. Am. Ceram. Soc., 45, 249 (1962).Google Scholar
15 Thompson, P., Cox, D.E. and Hasting, J.B., J. Appl. Cryst., 20, 7983 (1987).Google Scholar
16 Sugiyama, M. and Kubo, H., in Advances in Ceramics. Vol. 24, edited by Somiya, S., Yamamoto, N. and Yanagida, H. (Science and Technology of Zirconia III) p. 965 (1988).Google Scholar
17 Noma, T., Yoshimura, M., Somiya, S., Kato, M., Shibata, M. and Seto, H., in Advances in Ceramics. Vol. 24, edited by Somiya, S., Yamamoto, N. and Yanagida, H. (Science and Technology of Zirconia III) p. 377 (1988).Google Scholar
18 Esquivias, L., Barrera-Solano, C., Pinero, M. and Prieto, C., submitted to J. Alloys and Compounds.Google Scholar