Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T21:49:11.425Z Has data issue: false hasContentIssue false

X-ray Scattering Measurements of the Ag(111) Surface Thermal Expansion

Published online by Cambridge University Press:  21 March 2011

Cristian E. Botez
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, U.S.A.
William C. Elliott
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, U.S.A.
Paul F. Miceli
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, U.S.A.
Peter W. Stephens
Affiliation:
Department of Physics, State University of New York, Stony Brook, NY 11794, U.S.A.
Get access

Abstract

We have used synchrotron X-ray diffraction to study the thermal expansion of the Ag(111) surface. Throughout the temperature interval between 300 and 1100K, we observed that the separation between the first and the second atomic layers at the surface, 12 d, differs from its bulk counterpart, d, by less than 1%, indicating that the thermal expansion at the surface is similar to the one in the bulk. This result represents the first experimental confirmation of the predictions from molecular dynamics simulations, which indicate a small enhancement of the anharmonic effects at this surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Satiris, P., Lu, H.C. and Gustafsson, T., Phys. Rev. Lett. 72, 3574 (1994).Google Scholar
2. Lewis, L. J., Phys. Rev. B 50, 17693 (1994).Google Scholar
3. Rawi, A.N. Al, Kara, A. and Rahman, T.S., Surf. Sci. 446, 17 (2000).Google Scholar
4. Xie, J., Gironcoli, S. de, Baroni, S. and Scheffler, M., Phys. Rev. B 59, 970 (1999).Google Scholar
5. Narashimhan, S. and Scheffler, M., Z. Phys. Chem. 202, 253 (1997).Google Scholar
6. Hakkinen, H. and Mannnien, M., Phys. Rev. B 46, 1725 (1992).Google Scholar
7. Robinson, I.K. and Tweet, D.J., Rep. Prog. Phys. 55, 599655 (1992).Google Scholar
8. Botez, C.E., Elliott, W.C., Miceli, P.F. and Stephens, P.W., Phys. Rev. B 63, 113404 (2001).Google Scholar
9. Helgesen, G., Gibbs, D., Baddorf, A.P., Zehner, D.M. and Mochrie, S.G.J., Phys. Rev. B 48,15320 (1993).Google Scholar
10. Frenken, J.W.F., Hussen, F. and Veen, J.F. van der, Phys. Rev. Lett. 58, 401 (1987), K. Pohl, J.H. Cho, K. Terakura, M. Scheffler and E. W. Plummer, Phys. Rev. Lett. 80, 2853 (1998); K. H. Chae, H. C. Lu and T. Gustafsson, Phys. Rev. B 54, 14082, (1996); Y. Cao and E. Conrad, Phys. Rev. Lett. 65, 2808 (1990).Google Scholar
11. Rawi, A.N. Al, Kara, A., Staikov, P., Ghosh, C. and Rahman, T.S., Phys. Rev. Lett. 86, 2074 (2001).Google Scholar
12. Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, 1956) p. 137.Google Scholar