Skip to main content Accessibility help

X-Ray Reflectometry Determination of Structural Information from Atomic Layer Deposition Nanometer-scale Hafnium Oxide Thin Films

  • Donald Windover (a1), D. L. Gil (a2), J. P. Cline (a3), A Henins (a4), N. Armstrong (a5), P. Y. Hung (a6), S. C. Song (a7), R. Jammy (a8) and A. Diebold (a9)...


This work demonstrates the application of a Markov Chain Monte Carlo (MCMC) approach to modeling X-ray reflectometry (XRR) data taken from a sub 10 nm Hafnium oxide film. We present here a comparison of two structural models for a 6 nm HfxOy atomic layer deposition (ALD) film on Si. Using the MCMC method and two distinct structural models, we show evidence of a thin interface between the HfxOy and Si layers with a density much higher than native SiO2. Results from genetic algorithm XRR analysis and thickness measurements using cross-sectional transmission electron microscopy are included for comparison. We also demonstrate that our interpretation of HfxOy thickness differs between the two structural models (i.e., total film thicknesses may be partially additive within each model).



Hide All
1. Pietsch, U., Holý, V., and Baumbach, T., High-resolution X-ray scattering: from thin films to lateral nanostructures. 2004, New York: Springer.
2. Chason, E. and Mayer, T.M., Thin film and surface characterization by specular X-ray reflectivity. Critical Reviews in Solid State and Materials Sciences, 1997. 22(1): p. 1.
3. Parratt, L.G., Surface studies of solids by total reflection of X-rays. Phys. Rev., 1954. 95: p. 359.
4. Nevot, L. and Croce, P., Characterization of Surfaces by Grazing X-Ray Reflection - Application to Study of Polishing of Some Silicate-Glasses. Revue De Physique Appliquee, 1980. 15(3): p. 761.
5. Bowen, D.K. and Deslattes, R.D., X-ray metrology by diffraction and reflectivity. AIP Conference Proceedings, 2001. 550(550): p. 570.
6. Wormington, M., et al., Characterization of structures from X-ray scattering data using genetic algorithms. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1999. 357(1761): p. 2827.
7. Sivia, D.S., Data Analysis A Bayesian Tutorial. 1996, Oxford: Oxford University Press.
8. Wallace, R.M. and Wilk, G.D., High-kappa dielectric materials for microelectronics. Critical Reviews in Solid State and Materials Sciences, 2003. 28(4): p. 231.
9. Windover, D., et al., Characterization of atomic layer deposition using X-ray reflectometry. AIP Conference Proceedings, 2005. 788(788): p. 161.
10. Fishman, G.S., Monte Carlo concepts, algorithms and applications. 1996, New York: Springer-Verlag.
11. Taylor, B.N. and Kuyatt, C.E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results. 1994 ed. NIST Technical Note 1297. 1994, Gaithersburg, MD: National Institute of Standards and Technology, U.S. Department of Commerce.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed