Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T07:42:28.268Z Has data issue: false hasContentIssue false

X-ray Absorption Spectroscopy study of lithium insertion mechanism in Li1.2V3O8

Published online by Cambridge University Press:  11 February 2011

N. Bourgeon
Affiliation:
Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP32229, 44322 Nantes, France
J. Gaubicher
Affiliation:
Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP32229, 44322 Nantes, France
D. Guyomard
Affiliation:
Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP32229, 44322 Nantes, France
G. Ouvrard
Affiliation:
Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP32229, 44322 Nantes, France
Get access

Abstract

X-ray absorption spectroscopy (XAS) measurements were performed to thoroughly understand lithium insertion mechanism in Li1.2V3O8. The evolution of the absorption pre-edge and edge corresponding to the local environment of the vanadium in the bulk has been examined by ex-si tu XAS measurement at the vanadium K edge, during the first discharge-charge cycle. The results show a regular and reversible evolution of the pre-edge intensity, the edge position and the vanadium environment toward nearly perfect VO6 octahedra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Panero, S., Pasquali, M. and Pistoia, G., J. Electrochem. Soc. 130, 1225 (1983)Google Scholar
2. Geronov, Y., Puresheva, B., Moshtev, R. V., Zlatilova, P., Kosev, T., Stoyvov, Z., Pistoia, G. and Pasquali, M., J. Electrochem. Soc. 137, 3338 (1990)Google Scholar
3. Pistoia, G., Pasquali, M., Manev, V. and Moshtev, R. V., Journal of Power Sources 15, 13 (1985).Google Scholar
4. West, K., Zachou-Christiansen, B., Skaarup, S., Saidi, Y., Barker, J., Olsen, I. I., Pynenberg, R. and Kokshang, R., J. Electrochem. Soc. 143, 820 (1996).Google Scholar
5. Scrosati, B., Brit. Poly. J. 20, 219 (1988)Google Scholar
6. Bonino, F., Ottaviani, M., Scrosati, B. and Pistoia, G., J. Electrochem. Soc. 135, 12 (1988)Google Scholar
7. Wadsley, A. D., Acta Cryst. 10, 261 (1957).Google Scholar
8. de Picciotto, L. A., Adendorff, K. T., Liles, D. C. and Thackeray, M. M., Solid State Ionics 62, 297 (1993).Google Scholar
9. Kawakita, J., Katayama, Y., Miura, T., Kishi, T., Solid State Ionics 107, 145152 (1998)Google Scholar
10. Friberg, S., Roberts, K., in: Lindner, G., Nyberg, K., (eds.), Environmental Engineering, Reidel, Dordrecht, 1973.Google Scholar
11. Eriksson, L., Alm, B., Mater. Sci. Technol. 28, 203 (1993).Google Scholar
12. Renders, G., Broze, G., Jerome, R., Teyssic, Ph., J. Macromol. Sci. Chem. A 16, 1399 (1981).Google Scholar
13. Kumagai, N., Yu, A., J. Electrochem. Soc. 144, 830 (1997).Google Scholar
14. Leroux, F., Guyomard, D., Piffard, Y., Solid State Ionics 80, 30 (1995).Google Scholar
15. Mouget, C., Chabre, Y., MacPile, licensed from CNRS and UJF Grenoble to BioLogic Co.Google Scholar