Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T00:35:27.125Z Has data issue: false hasContentIssue false

X-Ray Absorption Fine Structure Applied to the Study of Systems with Lattice Instabilities

Published online by Cambridge University Press:  15 February 2011

J. MUSTRE DE Leon
Affiliation:
CINVESTAV-Mérida, Mérida, Yuc., 97133, México
S. D. Conradson
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
T. Tyson
Affiliation:
New Jersey Institute of Technology, Newark, New Jersey
A. R. Bishop
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
M. Salkola
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
F.J. Espinosa
Affiliation:
CINVESTAV-Mérida, Mérida, Yuc., 97133, México
J. L. Peña
Affiliation:
CINVESTAV-Mérida, Mérida, Yuc., 97133, México
Get access

Abstract

We present a simplified model of electrons and phonons in a three-site cluster as a paradigm of a system exhibiting a lattice instability. We point out the utility of X-ray absorption fine structure (XAFS) in the study of materials where the coupling between electrons and phonons leads to the appearance of such lattice instabilities. As examples of these systems, we present X-ray absorption fine structure (XAFS) measurements on magnetic manganese oxide materials and II-VI semiconductors. Both of these systems exhibit local lattice instabilities which are reflected in the transport properties. In the case of the manganese oxide La0.67Ca0.33MnO3 we observe a change in the Mn-O local structure accompanying the ferromagnetic and metal-insulator transitions. For In doped CdTe we observe the appearance of a lattice distortion centered at the Cd atoms as the In concentration is increased. This distortion is associated with the trapping of free charge carriers, leading to the saturation of the conductivity as the In concentration increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bussmann-Holder, A., Bishop, A.R., Phys. Rev. B 51, 6640 (1995).Google Scholar
[2] Bussmann-Holder, A., Phys. Rev. B 40, 11639 (1989).Google Scholar
[3] Leon, J. Mustre de, Batistic, I., Bishop, A.R., and Trugman, S., Phys. Rev. Lett. 68, 3236 (1992).Google Scholar
[4] Alexandrov, A.S. and Ranninger, J., Phys. Rev. B 45, 13109 (1992).Google Scholar
[5] Salkola, M.I., Bishop, A.R., Leon, J. Mustre de, and Trugman, S., Phys. Rev. B 51, 8878 (1995).Google Scholar
[6] Jonker, G. H. and Santen, J. H. van, Physica 16, 337 (1950); G. H. Jonker, Physica 22, 707 (1956); G. H. Jonker and J. H. van Santen, Physica 16, 49 (1954).Google Scholar
[7] Yakel, H. L. Jr.,, Acta. Cryst. 8, 394 (1955)Google Scholar
[8] Kusters, R. M., Singleton, J., Keen, D. A., McGreevy, R., and Hayse, W.., Physica B 155, 362 (1989).Google Scholar
[9] Helmolt, R. von, Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993). R. von Helmolt, J. Wecker, K. Samwer, L. Haupt, and K. Barner, J. Appl. Phys. 76, 6925 (1994).Google Scholar
[10] (a) Zener, C., Phys. Rev. 81, 440 (1951); C. Zener, Phys. Rev. 82, 403 (1951). (b) P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955). (c) P. -G. de Gennes, Phys. Rev. 118, 141 (1960). (d) K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1971)Google Scholar
[11] Roeder, H., Zang, J. and Bishop, A., Phys. Rev. Lett. 76, 1356 (1996).Google Scholar
[12] Bassani, F., et. al., J. Appl. Phys. 72, 2927 (1992).Google Scholar
[13] Petruzzello, J., Gaines, J., Sluis, P. van der, Olego, D., and Ponzoni, C., Appl. Phys. Lett. 62, 1496 (1993).Google Scholar
[14] Khachaturyan, K., Kaminska, M., Weber, E.R., Becla, P., and Street, R.A., Phys. Rev. B 40, 6304 (1989).Google Scholar
[15] Park, C.H. and Chadi, D.J., Appl. Phys. Lett. 66, 3167 (1995).Google Scholar
[16] Park, C.H. and Chadi, D.J., Phys. Rev. B 52, 11884 (1995).Google Scholar
[17] Sette, F., Pearton, S.J., Poate, J.M., Rowe, J.E., and Stohr, J., Phys. Rev. Lett. 56, 2637 (1986).Google Scholar
[18] Erbil, A., Weber, W., Cargill, G. S., and Boehme, R. F. Phys. Rev. B 34, 1392 (1986).Google Scholar
[19] Neumeier, J. J., et al., Phys Rev. B 51, 16491 (1995);Google Scholar
[20] Lee, P.A., Citrin, P.H., Eisenberger, P., and Kincaid, B.M., Rev. Mod. Phys. 53, 769 (1981)Google Scholar
[21] Zabinsky, S.I., Ankudinov, A., Rehr, J.J., and Albers, R.C., Phys. Rev. B 52, 2995 (1995).Google Scholar
[22] Castro-Rodriguez, R., Pefia, J. L., J. Vac. Sci. Technol. A11, 730 (1993).Google Scholar
[23] Park, C.H. and Chadi, D.J., Phys. Rev. Lett. 75, 1134 (1995).Google Scholar