Skip to main content Accessibility help

When Interface Gets Rough…

  • Toh-Ming Lu (a1), Hong-Ning Yang (a2) and Gwo-Ching Wang (a2)


Interface roughness is one of the central features in many important thin film technologies. Roughness is a result of far from equilibrium dynamic growth process and is difficult to describe using conventional statistical mechanics. Recently a dynamic scaling hypothesis has been proposed to describe such a system in which both time and space scaling are considered simultaneously. This approach has generated tremendous interest, both theoretical and experimental, for scientists working in thin film growth/etching as well as many diverse fields. In this paper we shall discuss the origin of the formation of interface roughness, the difference between near equilibrium and far from equilibrium growth problems, the relevant parameters that are necessary to describe a rough interface, and the application of the self-affine scaling concept in growth problems. The experimental approaches to study rough interfaces and growth fronts using diffraction will be summarized. It is shown that there exist two types of dynamic scaling during growth, one with a stationary local slope and another one with a nonstationary local slope. Future directions in this new area of research are highlighted.



Hide All
1. Bauer, E., Z. Kristallogr. 110, 372 (1958).
2. Kern, R., Lay, G. Le, and Metois, J.J., Basis Mechanisms in the Early Stages of Epitaxy, in Current Topis in Mat. Sci. 3, 131 (North Holland, Amsterdam, 1979).
3. Venables, J.A., Spiller, G.D.T., and Hanbichen, M., Rpt. Progr. Phys. 47, 399 (1984).
4. Family, F. and Vicsek, T., J. Phys. A18, L75 (1985).
5. For review, see Dynamics of Fractal Surfaces, edited by Family, F. and Vicsek, T. (World Scientific, Singapore, 1990).
6. Mitchell, M.W. and Bonnell, A., J. Mater. Res. 5, 2244 (1990).
7. Gómez-Rodríguez, J.M., Baró, A.M., and Salarezza, R.C., J. Vac. Sci. Technol. B9, 495 (1991).
8. Williams, R.S., Bruinsma, R., and Rudnik, J., in Evoltion of Surface and Thin Film Microstructure, edited by Atwater, H.A., Grabow, M., Chason, E., and Lagally, M. G. (Mat. Res. Soc. Proc. 280, Pittsburgh, PA, 1992); E. A. Eklund, R. Bruinsma, J. Rudnik, and R.S. Williams, Phys. Rev. Lett. 67, 1759 (1991).
9. Krim, J., Heyvaert, I., Haesendonck, C. Van, and Bruynseraede, Y., Phys. Rev. Lett. 70, 57 (1993).
10. Yang, H.-N., Chan, A., and Wang, G.-C., J. Appl. Phys. 74, 101 (1993).
11. You, H., Chiarello, R.P., Kim, H.K., and Vandervoort, K.G., Phys. Rev. Lett. 70, 2900 (1993).
12. Palasantzas, G. and Krim, J., Phys. Rev. Lett., in press.
13. Tong, W.M., Williams, R.S., Yanase, A., Segawa, Y., and Anderson, M.S., Phys. Rev. Lett. 72, 3374 (1994).
14. Pétri, R., Brault, P., Vatel, O., Henry, D., André, E., Dumas, P., and Salvan, F., J. Appl. Phys. 75, 7498 (1994).
15. Eaglesham, D.J., Gossmann, H.-J., and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990); D.J. Eaglesham and G. H. Gilmer, in Surface disordering: Growth, roughening and phase transitions, edited by R. Jullien et al. (Nova, NY 1993).
16. For review, see Yang, H.-N., Wang, G.-C., and Lu, T.-M., Diffraction from Rough Surfaces and Growth Fronts (World Scientific, Singapore, 1993).
17. Yang, H.-N., Lu, T.-M., and Wang, G.-C., Phys. Rev. Lett. 68, 2612 (1992); Phys. Rev. B47, 3911 (1993).
18. Wong, Po-zen and Bray, Alan J., Phys. Rev. B37, 7751 (1988).
19. Sinha, S. K., Sirota, E. B., Garoff, S., and Stanley, H. B., Phys. Rev. B38, 2297 (1988).
20. Chiarello, R., Panella, V., Krim, J., and Thompson, C., Phys. Rev. Lett. 67, 3408 (1991).
21. He, Y.-L., Yang, H.-N., Lu, T.-M., and Wang, G.-C., Phys. Rev. Lett. 69, 3770 (1992).
22. Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994).
23. Thompson, C., Palasantzas, G., Feng, Y.P., Sinha, S.K., and Krim, J., Phys. Rev. B49, 4902 (1994).
24. Yang, H.-N., Wang, G.-C., and Lu, T.-M., Phys. Rev. B50, 7365 (1994).
25. Salditt, T., Metzger, T.H., and Peisl, J., Phys. Rev. Lett. 73, 2228 (1994).
26. Yang, H.-N., G.-C.Wang, and Lu, T.-M., Phys. Rev. Lett. 73, 2348 (1994).
27. Zeng, H. and Vidali, G., Phys. Rev. Lett., in press.
28. Wolf, D.E. and Villain, J., Europhys. Lett. 13, 389 (1990).
29. Lai, Z.-W. and Sarma, S. Das, Phys. Rev. Lett. 66, 2348 (1991).
30. Tang, L.-H. and Nattermann, T., Phys. Rev. Lett. 66, 2899 (1991).
31. Zangwill, A., Vvedensky, D.D., Luse, C.N., and Wilby, M.R., Surf. Sci. 274, L529 (1992); Phys. Rev. E48, 852 (1993).
32. Siegert, M. and Plischke, M., Phys. Rev. Lett. 68, 2035 (1992).
33. Amar, J.G., Lain, P.-M., and Family, F., Phys. Rev. E47, 3242 (1993); J.G. Amar and F. Family, in Mechanisms of Thin Film Evolution, edited by S.M. Yalisove, C.V. Thompson, and D.J. Eaglesham (Mat. Res. Soc. Proc. 317, Pittsburgh, PA, 1994).
34. Mullins, W. W., J. Appl. Phys. 28, 334 (1957); 30, 77 (1959).

Related content

Powered by UNSILO

When Interface Gets Rough…

  • Toh-Ming Lu (a1), Hong-Ning Yang (a2) and Gwo-Ching Wang (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.