Skip to main content Accessibility help

What Xe Nanocrystals in Al Can Teach us in Materials Science

  • C. W. Allen (a1), R. C. Birtcher (a1), U. Dahmen (a2), K. Furuya (a3), M. Song (a3) and S. E. Donnelly (a4)...


Noble gases are generally very insoluble in solids. For example, Xe implanted into Al at 300 K forms a fine dispersion of crystalline precipitates and, at large enough fluence, fluid precipitates, both of which are stabilized, relative to the gas phase, by the Laplace pressure due to precipitate/matrix interface tensions. High resolution electron microscopy has been performed to determine the largest Xe nanocrystalline precipitate in local equilibrium with fluid Xe precipitates within the Al matrix. From the shape and size of the largest crystal and the Laplace pressure associated with its interface, we show that the interface tensions can be derived by setting the Laplace pressure equal to the pressure for solid/fluid Xe equilibrium derived from bulk Xe compression isotherms at the temperature of equilibration and observation. The Xe/Al interface tensions thus derived are in the range of accepted values of surface tensions for the Al matrix. Furthermore, it is suggested that this same technique may be employed to estimate unknown surface tensions of a solid matrix from the size and shape of maximal nanocrystals of a noble gas element, which have been equilibrated in that matrix at the temperature of observation.



Hide All
1. Felde, A. vom, Fink, J., Müller-Heinzerling, Th., Pflüger, J., Scheerer, B. and Linker, G., Phys. Rev. Lett. 53, 922 (1984).
2. Templier, C., in Fundamental Aspects Of Inert Gases in Solids, edited by Donnelly, S. E. and Evans, J. H. (Plenum Press, New York, 1991), pp. 117132.
3. Allen, C. W., Birtcher, R. C., Donnelly, S. E., Furuya, K., Ishikawa, N., and M. Song Appl. Phys. Lett. 74, 26112613 (1999).
4. Allen, C. W., Song, M., Furuya, K., Birtcher, R. C., Donnelly, S. E., and Mitsuishi, K., J. Electron Micros. 48, 10251030 (1999).
5. Birtcher, R. C., Donnelly, S. E., Song, M., Furuya, K., Mitsuishi, K., and Allen, C. W. C, Phys. Rev. Lett. 83, 16171620 (1999).
6. Donnelly, S. E., Furuya, K., Song, M., Birtcher, R. C., and Allen, C. W. in Proceedings of the. International Conference on the Electron, edited by Kirkland, A. and Brown, P. D.. (IOM Communications Book 687, IOM Communications Ltd, London, 1998) pp. 306312; K. Furuya, M. Song, K. Mitsuishi, R. C. Birtcher, C. W. Allen, and S. E. Donnelly, ibid, pp. 341-347.
7. Templier, C., Garem, H., Riviere, J. P., and Delafond, J., Nucl. Instr. Meth. B18, 2433 (1986).
8. Johnson, E., Johansen, A., Dahmen, U., Chen, S., Fujii, T., Mat. Sci. and Engr. A 304–306, 187193 (2001).
9. Furuya, K., Ishikawa, N., and Allen, C. W., J. of Micros. 194, 152160 (1999).
10. LahrP, P. H., and Eversole, W. G., J. Chem and Engr. Data 7, 4247 (1962).
11. Tyson, W. R. and Miller, W. A., Surf. Sci. 62, 267276 (1977).
12. Murr, L. E., Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975) p. 124.
13. Westmacott, K. H., Smallman, R. E., and Dodson, P. S., Metal Sci, J. 2, 177181 (1968).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed