Skip to main content Accessibility help

What can we Learn from Molecular Dynamics Simulations of Macromolecular Liquids?

  • Gary S. Grest (a1), Kurt Kremer (a2) and Michael Murat (a1)


We describe how molecular dynamics simulations for a relatively simple coarse grained model can be very useful for investigating the static and dynamic properties of polymers and other macromolecular liquids. We show that it is important to use a simplified coarse grained model instead of a detailed microscopic model if one is interested in studying on modern supercomputers large systems which also relax slowly. As examples we present results for isolated star polymers with f-arms and diluted gelation/percolation clusters. We find in agreement with recent neutron scattering experiments that diluted percolation clusters swell and that their fractal dimension is reduced from 2.5 to 2. We also discuss our results for a dense melt of entangled linear polymers to show that the method is effective at high density. Our results for the entangled melt cover the crossover from Rouse to reptation and strongly support the concept of reptation.



Hide All
1. deGennes, P. G., Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, NY, 1979).
2. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).
3. Binder, K., in Molecular Level Calculations of the Structure and Properties of Non-Crystalline Polymers, edited by Biscerano, J. (Dekker, New York, 1989).
4. Edwards, S. F., Proc. Phys. Soc. 92, 9 (1980).
5. deGennes, P. G., J. Chem. Phys. 55, 572 (1971).
6. Kremer, K. and Grest, G. S., in Computer Simulations of Polymers, edited by R. J. Roe (to be published).
7. Kolinski, A., Skolnick, J., and Yaris, R., J. Chem. Phys. 86, 1567 (1987).
8. Kremer, K. and Binder, K., Comp. Phys. Rept. 7, 261 (1989).
9. Kremer, K., Grest, G. S., and Carmesin, I., Phys. Rev. Lett. 61, 566 (1988); K. Kremer and G. S. Grest, J. Chem. Phys., 1990.
10. Rigby, D. and Roe, R. J., J. Chem. Phys. 87, 7285 (1987); 89, 5280 (1988).
11. Clarke, J. H. R. and Brown, D., Mol. Sim. 3, 27 (1989).
12. Balazs, A. C., Anderson, C., and Muthukumar, M., Macromolecules 20, 1999 (1987).
13. Carmesin, I. and Kremer, K., Macromolecules 21, 2819 (1988).
14. Dünweg, B. and Kremer, K., in preparation.
15. Grest, G. S., Dünweg, B., and Kremer, K., Comp. Phys. Comm. 55, 269 (1989).
16. Daoud, M. and Cotton, J. P., J. Phys. (Paris) 43, 531 (1982).
17. Birshtein, T. M., Zhulina, E. B., and Borisov, O. V., Polymer 27, 1078 (1986).
18. Rouse, P. E., J. Chem. Phys. 21, 1273 (1953).
19. Murat, M. and Grest, G. S., Phys. Rev. Lett. 63, 1074 (1989); Macromolecules 22, 4054 (1989).
20. Chakrabarti, A. and Toral, R., (to be published).
21. Grest, G. S. and Kremer, K., Phys. Rev. A 33, 3628 (1986).
22. Bird, R. B., Armstrong, R. C., and Hassager, O., Dynamics of Polymeric Liquids (Wiley, New York, 1977), Vol.1.
23. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ (1971).
24. Burchard, W., Adv. Polym. Sci. 48, 1 (1983).
25. Bauer, B. J., Fetters, L. J., Graessley, W. W., Hadjichristidis, N., and Quack, G. F., Macromolecules 22, 2337 (1989).
26. Crest, G. S., Kremer, K., and Witten, T. A., Macromolecules 20, 1376 (1987).
27. Grest, G. S., Kremer, K., Milner, S. T., and Witten, T. A., Macromolecules 22, 1904 (1989).
28. Richter, D., Farago, B., Fetters, L. J., Huang, J., and Ewen, B., Macromolecules (1990).
29. Batoulis, J. and Kremer, K., Europhys. Lett. 7, 683 (1988).
30. Daoud, M., Family, F., and Jannink, G., J. Phys. Lett. (Paris) 45, 199 (1984).
31. Flory, P., Statistical Mechanics of Chain Molecules, (Interscience, New York, 1969).
32. Cates, M. E., Phys. Rev. Lett. 53, 926 (1984).
33. Stauffer, D., J. Chem. Soc. Faraday Trans. 272, 1354 (1976).
34. Alexander, S. and Orbach, R., J. Phys. Lett. (Paris) 43, L625 (1982).
35. Rammal, R. and Toulouse, G., J. Phys. Lett. (Paris) 44, L13 (1983).
36. Grest, G. S. and Murat, M., (to be published).
37. Adam, M., Delsanti, M., Munch, J. P., and Durand, D., J. Phys. (Paris) 48, 1809 (1987).
38. Bouchaud, E., Delsanti, M., Adam, M., Daoud, M. and Durand, D., J. Phys. (Paris) 47, 1273 (1986).
39. Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R., and Meakin, P., Nature 339, 360 (1989).
40. Abraham, F. F., Rudge, W. E., and Plischke, M., Phys. Rev. Lett. 62, 1757 (1989).
41. Kantor, Y., Kardar, M., and Nelson, D. R., Phys. Rev. Lett. 57, 791 (1986); Phys. Rev. A 35, 3056 (1987).
42. Abraham, F. F. and Nelson, D. R., (to be published).
43. Baumgärtner, A., Ann. Rev. Phys. Chem. 35, 419 (1984).

What can we Learn from Molecular Dynamics Simulations of Macromolecular Liquids?

  • Gary S. Grest (a1), Kurt Kremer (a2) and Michael Murat (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed