Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T12:42:06.268Z Has data issue: false hasContentIssue false

Waveguides Fabricated in LiNbO3 by Proton Implantation

Published online by Cambridge University Press:  15 February 2011

P. Moretti
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard Lyon I, F - 69622 Villeurbanne, France
P. Thevenard
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard Lyon I, F - 69622 Villeurbanne, France
K. Wirl
Affiliation:
Fachbereich Physik, Universität Osnabrück, D - 4500 Osnabrück, Germany
P. Hertel
Affiliation:
Fachbereich Physik, Universität Osnabrück, D - 4500 Osnabrück, Germany
Get access

Abstract

Optical planar waveguides, with a controllable thickness in a very wide range, typically from 3 to 20 μm, can be fabricated by thermally controlled proton implantation in LiNbO3. In the nuclear stopping region at the end of the ion's tracks a sufficient decrease in refractive index is obtained, thus forming an adequate optical barrier. The mode confinement was investigated by dark line mode spectroscopy, and the refractive index profiles were reconstructed. The effects of different ion fluences and ion energies in the Mev range on the refractive index profile at 300 K have been investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Armenise, M.N., IEE Proceedings, 135, Pt J, 2, 85 (1988),Google Scholar
[2] Buchal, Ch., Ashley, P. R., Appleton, B. R., J. Mat. Res. 2, 222 (1987).10.1557/JMR.1987.0222CrossRefGoogle Scholar
[3] Townsend, P. D., Nucl. Instr. and Meth. B 46, 18 (1990).10.1016/0168-583X(90)90663-FCrossRefGoogle Scholar
[4] Bremer, T., Heiland, W., Hellermann, B., Hertel, P., Krätzig, E., Kollewe, D., Ferroelectrics Letter 9, 11 (1988).10.1080/07315178808200688CrossRefGoogle Scholar
[5] Strohkendl, F. P.,Günter, P., Buchal, Ch. and Irmsher, R., J. Appl. Phys. 69, 84 (1991)10.1063/1.347661CrossRefGoogle Scholar
[6] Moretti, P., Thevenard, P., Godefroy, G., Sommerfeld, R., Hertel, P. and Krätzig, E., Phys. stat. sol. (a) 117, (1990) K85.10.1002/pssa.2211170155CrossRefGoogle Scholar
[7] Moretti, P., HelmKamp, A., Thevenard, P., Godefroy, G., Mater. Sci. and Eng. B 9., 475 (1991).10.1016/0921-5107(91)90076-8CrossRefGoogle Scholar
[8] Moretti, P., Thevenard, P., Wirl, K., Hertel, P., Hesse, P., Krätzig, E., and Godefroy, G., to be published in Ferroelectrics.Google Scholar
[9] Bremer, T., Hertel, P. and Kollewe, D., Nucl. Instrum. Methods Phys. Res. B 34, 62 (1988).10.1016/0168-583X(88)90365-5CrossRefGoogle Scholar
[10] Ziegler, F., Biersack, J. P., Littmark, U., The stopping and Ranges of Ions in Solids, Pergamont Press, New York (1988).10.1016/B978-0-12-780621-1.50005-8CrossRefGoogle Scholar