Skip to main content Accessibility help
×
Home

Voltage Shifts and Defect-Dipoles in Ferroelectric Capacitors

  • W. L. Warren (a1), G. E. Pike (a1), D. Dimos (a1), K. Vanheusden (a1), H.N. Al-Shareef (a1), B. A. Tuttle (a1), R. Ramesh (a2) and J. T. Evans (a3)...

Abstract

We review the processes and mechanisms by which voltage offsets occur in the hysteresis loop of ferroelectric materials. Simply stated, voltage shifts arise from nearinterfacial charge trapping in the ferroelectric. We show that the impetus behind voltage shifts in ferroelectric capacitors is the net polarization, with the net polarization being determined by the perovskite and the aligned defect-dipole components. Some common defect-dipoles in the PZT system are lead vacancy-oxygen vacancy complexes. One way to change the net polarization in the ferroelectric is to subject the PZT capacitor to a dc bias at elevated temperature; this process is spectroscopically shown to align defect-dipoles along the direction of the applied electric field. The alignment of defect-dipoles can strongly impact several material properties. One such impact is that it can lead to enhanced voltage shifts (imprint). It is proposed that the net polarization determines the spatial location of the asymmetrically trapped charge that are the cause for the voltage shifts. An enhanced polarization at one electrode interface can lead to larger voltage shifts since it lowers the electrostatic potential well for electron trapping, i.e., more electron trapping can occur. Defect-dipole alignment is also shown to increase the UV sensitivity of the ferroelectric.

Copyright

References

Hide All
1. Megaw, H.D., Acta. Cryst. 5, 739 (1952).
2. Scott, J.F. and Araujo, C.A., Science 246, 1400 (1989).
3. Evans, J.T. and Womack, R., IEEE J. Solid State Circuits 23, 1171 (1988).
4. Dimos, D., Warren, W.L., Sinclair, M.B., Tuttle, B.A., and Schwartz, R.W., J. Appl. Phys. 76, 4305 (1994).
5. Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G., and Evans, J.T., Appl. Phys. Lett. 66, 484 (1995).
6. Warren, W.L., Dimos, D., Pike, G.E., Tuttle, B.A., Raymond, M.V., Ramesh, R., and Evans, J.T. Jr., Appl. Phys. Lett. 67, 866 (1995).
7. Mihara, T., Watanabe, H., and Arajuo, C.A. Paz de, Jpn. J. Appl. Phys. 32, 4168 (1993).
8. Lee, J., Ramesh, R., Keramidas, V.G., Warren, W.L., Pike, G.E., and Evans, J.T. Jr., Appl. Phys. Lett. 66, 1337 (1995).
9. Lambeck, P.V. and Jonker, G.H., J. Phys. Chem. Solids 47, 453 (1986).
10. Schulze, W.A. and Ogino, K., Ferroelectrics 87, 361 (1988).
11. Arlt, G. and Neumann, H., Ferroelectrics 87, 109 (1988).
12. Lohkamper, R., Neumann, H., and Arlt, G., J. Appl. Phys. 68, 4220 (1990).
13. Pugh, R.D., Sabochick, M. J. and Luke, T.E., J. Appl. Phys. 72, 1049 (1992).
14. Yoo, I.K., Desu, S.B., and Xing, J., MRS Symp. Proc. 310, 165 (1993).
15. Hagemann, H.-J., J. Phys. C 11, 3333 (1978).
16. Lambeck, P.V. and Jonker, G.H., J. Phys. Chem. Sol. 47, 453 (1986).
17. Fukami, T. and Fujii, S., Jpn. J. Appl. Phys. 24, 632 (1985).
18. Miller, S.L., Schwank, J.R., Nasby, R.D., and Rodgers, M.S., J. Appl. Phys. 70, 2849 (1991).
19. Assink, R.A. and Schwartz, R.W., Chem. Mater. 5, 511 (1993).
20. Warren, W.L., Dimos, D., Pike, G.E., Vanheusden, K., and Ramesh, R., Appl. Phys. Lett. 67, 1689 (1995).
21. Robels, U., Schneider-Stormann, L., and Arlt, G., Ferroelectrics 168, 301 (1995).
22. Smyth, D.M., Ferroelectrics, 116, 117 (1991).
23. Eror, N.G. and Balachandran, U., Solid State Commun. 44, 1117 (1982).
24. Siegel, E. and MUller, K.A., Phys. Rev. B 20, 3587 (1979).
25. Siegel, E. and Miller, K. A., Phys. Rev. B 19, 109 (1979).
26. Possenride, E., Jacobs, P., and Schirmer, O.F., J. Phys. Conden. Matter 4, 4719 (1992).
27. Berney, R.L. and Cowan, D.L., Phys. Rev. B 23, 37 (1983).
28. Warren, W.L., Pike, G.E., Vanheusden, K., Dimos, D., Tuttle, B.A., and Robertson, J., J. Appl. Phys. 79 xxxx (1996).
29. Dimos, D. and Warren, W.L., J. Appl. Phys., submitted.
30. Warren, W.L., Vanheusden, K., Dimos, D., Pike, G.E. and Tuttle, B.A., J. Am. Ceram. Soc. 78, 536 (1996).
31. Lewis, G.V., Catlow, C.R.A., and Casselton, R.E.W., J. Am. Ceram. Soc. 68, 555 (1985).
32. Waser, R. M., J. Am. Ceram. Soc. 72, 2234 (1989).
33. Schaffrin, C., Phys. Stat. Sol. A 35, 79 (1976).
34. Waser, R., Baiatu, T., and Hardtl, K.-H., J. Am. Ceram. Soc. 73, 1645 (1990).
35. Minford, W.J., IEEE TCHMT, CHMT–5, 297 (1982).
36. Takahashi, S., Ferroelectrics 41, 143 (1982).
37. Smyth, D.M., Prog. Solid St. Chem. 15, 145 (1984).
38. Raymond, M.V., Chen, J., and Smyth, D.M., Integ. Ferroelectrics 5, 73 (1994)

Voltage Shifts and Defect-Dipoles in Ferroelectric Capacitors

  • W. L. Warren (a1), G. E. Pike (a1), D. Dimos (a1), K. Vanheusden (a1), H.N. Al-Shareef (a1), B. A. Tuttle (a1), R. Ramesh (a2) and J. T. Evans (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed