Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T00:13:29.722Z Has data issue: false hasContentIssue false

Visible Photoluminescence From Rapid-Thermal-Oxidized Porous Silicon

Published online by Cambridge University Press:  25 February 2011

Y. Kanemitsu
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, lbaraki 305, Japan
T. Matsumoto
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, lbaraki 305, Japan
T. Futagi
Affiliation:
Electronics Research Laboratory, Nippon Steel Corporation, Kanagawa 229, Japan
H. Mimura
Affiliation:
Electronics Research Laboratory, Nippon Steel Corporation, Kanagawa 229, Japan
Get access

Abstract

We have studied the origin of the visible photoluminescence (PL) from oxidized porous Si. The hydrogen–passivated surface of porous Si prepared by electrochemical etching is converted to stable silicon oxides by rapid–thermal–oxidization processes. At low oxidation temperature (Tox), the PL spectrum with a peak near 700 nm is observed. At high Tox above 800 °C, a strong blue PL is observed near 400 nm. We discuss the origin of blue and red PL by employing the results of ab initio electronic structure calculations of silicon–oxygen compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
[3] Kanemitsu, Y., Uto, H., Masumoto, Y., and Maeda, Y., Appl. Phys. Lett. 61, 2187 (1992).Google Scholar
[4] Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168 (1991)Google Scholar
[5] Matsumoto, T., Futagi, T., Mimura, H., and Kanemitsu, Y., Phys. Rev. B 47 (1993) in press.Google Scholar
[6] Tischler, M.A., Collins, R.T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
[7] Tai, C., Li, K.H., Kinosky, D.S., Qian, R.Z., Hsu, T.C., Irby, J.T., Banerjee, S.K., Tasch, A.F., Campbell, J.C., Hance, B.K., and White, J.M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
[8] Vial, J.C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., and Macfarlane, R.M., Phys. Rev. B 45, 14171 (1992).Google Scholar
[9] Petrova-Koch, V.. Muschik, T., Kux, A., Meyer, B.K., Koch, F., and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).CrossRefGoogle Scholar
[10] Linke, H., Omling, P., Meyer, B.K., Petrova-Koch, V.. Muschik, T., and Lehmann, V., Mater. Res. Soc. Symp. Proc. 283, to be published.Google Scholar
[11] Yamamoto, A. and Kanemitsu, Y., unpublished.Google Scholar
[12] Kanemitsu, Y.. Suzuki, K., Masumoto, Y., Komatsu, T., Sato, K., Kyushin, S., and Matsumoto, H., Solid State Commun. (1993) in press.Google Scholar
[13] Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
[14] Takeda, K. and Shiraishi, K., Solid State Commun. 85, 301 (1993).Google Scholar
[15] Takeda, K. and Shiraishi, K., Phys. Rev. B 39, 11028 (1989).Google Scholar
[16] Kanemitsu, Y., Takeda, K., Shiraishi, K., and Ogawa, T., (unpublished).Google Scholar
[17] Griscom, D. L.. J. Ceramic Soc. Jpn. 99, 923 (1991).CrossRefGoogle Scholar