Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T23:28:16.640Z Has data issue: false hasContentIssue false

Visible and Infrared Rare-Earth Activated Electroluminescence From Erbium Doped GaN

Published online by Cambridge University Press:  10 February 2011

M. Garter
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio 45221-0030 USA, a.steckl@uc.edu
R. Birkhahn
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio 45221-0030 USA, a.steckl@uc.edu
A. J. Steckl
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio 45221-0030 USA, a.steckl@uc.edu
J. Scofield
Affiliation:
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433
Get access

Abstract

Room temperature visible and IR light electroluminescence (EL) has been obtained from Er-doped GaN Schottky barrier diodes. The GaN was grown by molecular beam epitaxy on Si substrates using solid sources (for Ga and Er) and a plasma source for N2. Transparent contacts utilizing indium tin oxide were employed. Strong green light emission was observed under reverse bias due to electron impact excitation of the Er atoms. Weaker emission was present under forward bias. The emission spectrum consists of two narrow green lines at 537 and 558 nm and minor peaks at 413, 461, 665, and 706 nm. There is also emission at 1000 nm and 1540 nm in the IR. The green emission lines have been identified as Er transitions from the 2H11/2 and 4S3/2 levels to the 4I15/2 ground state. The IR emission lines have been identified as transitions from the 4I13/2 and 4I13/2 levels to the 4I15/2 ground state. EL intensity for visible and IR light has a sub-unity power law dependence on bias current. An external quantum efficiency of 0.1% has also been demonstrated under a reverse bias current of 3.85 mA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S. and Fasol, G., The Laser Diode, Springer Verlag, Berlin (1997), p. 215.Google Scholar
2 Downing, E., Hesselink, L., Ralston, J. and Macfarlane, R., Science 273, 1185 (August 1996).Google Scholar
3 Tropper, A.C., Carter, J.N., Lauder, R.D.T., Hanna, D.C., Davey, S.T., and Szebesta, D., J. Opt. Soc. Am. B 11 (5), 886 (May 1994).Google Scholar
4 Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46 (4), 381 (February 1985).Google Scholar
5 Franzo, G. and Priolo, F., Appl. Phys. Lett. 64, 2235 (April 1994).Google Scholar
6 Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 64, 2842 (May 1994).Google Scholar
7 Lombardo, S., Campisano, S. U., Hoven, G.N. van den, and Polman, A., J. Appl. Phys. 77, 6504 (June 1995)Google Scholar
8 Du, C. X., Ni, W. X., Joelsson, K. B., and Hansson, G. V., Appl. Phys. Lett. 71, 1023 (August 1997).Google Scholar
9 Coffa, S., Franzo, G., and Priolo, F., MRS Bulletin, 25 (April 1998).Google Scholar
10 Wilson, R. G. and Schwartz, R. N., Abernathy, C. R. and Pearton, S. J., Newman, N., Rubin, M., and Fu, T., Zavada, J. M., Appl. Phys. Lett. 65 (8), 992 (August 1994).Google Scholar
11 Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71 (2), 231 (July 1997).Google Scholar
12 Kim, S., Rhee, S. J., Tumbull, D. A., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71 (18), 2662 (November 1997).Google Scholar
13 Hansen, D. M., Zhang, R., Perkins, N. R., Safvi, S., Zhang, L., Bray, K. L., and Kuech, T. F., Appl. Phys. Lett. 72 (10), 1244 (March 1998).Google Scholar
14 Silkowski, E., Pomrenke, G. S., Yeo, Y. K. and Hengehold, R. L., Physica Scripta T69, 276 (1997).Google Scholar
15 Torvik, J. T., Qiu, C. H., Feuerstein, R. J. and Pankove, J. I., Namavar, F., J. Appl. Phys. 81 (9), 6343 (May 1997).Google Scholar
16 Qiu, C. H., Leksono, M. W., and Pankove, J. I., Torvik, J. T. and Feuerstein, R. J., Namavar, F., Appl. Phys. Lett. 66 (5), 562 (January 1995).Google Scholar
17 Zavada, M. and Zhang, D., Solid-State Electron. 38, 1285 (1995).Google Scholar
18 Torvik, T., Feuerstein, R. J., Pankove, J. I., Qiu, C. H., and, Namavar, F., Appl. Phys. Lett. 69, 2098 (September 1996).Google Scholar
19 Zavada, J. M., Thaik, M., Hommerich, U., Mackenzie, J.D., Abernathy, C. R., Electrochem. Soc. 98-11, 193rd Meeting, Abstract no. 535, (Spring 1998).Google Scholar
20 Steckl, A. J. and Birkhahn, R., Appl. Phys. Lett. 73 (12), 1700 (1998).Google Scholar
21 Birkhahn, R. and Steckl, A. J., Appl. Phys. Lett. 73 (14), 2143 (1998).Google Scholar
22 Steckl, A. J., Garter, M., Birkhahn, R., Scofield, J., Appl. Phys. Lett. 73 (17), 2450 (1998).Google Scholar
23 Garter, M., Scofield, J., Birkhahn, R., Steckl, A.J., Appl. Phys. Lett. 74 (Jan. 11, 1998)Google Scholar