Skip to main content Accessibility help

Visible and Infrared Emission from Er-doped III-N Light Emitting Diodes

  • John M. Zavada (a1), Ei Ei Nyein (a2), Uwe Hömmerich (a2), J. Li (a3), J. Y. Lin (a3), H. X. Jiang (a3), P. Chow (a4) and Jian-Wei Dong (a4)...


We report on the visible and infrared emission characteristics of Er-doped III-N lightemitting diodes (LEDs). Quantum well-like device structures were grown through a combination of metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) on cplane sapphire substrates. The dual stage growth process was used to take advantage of the high quality of AlGaN layers produced by MOCVD and in situ doping of Er during MBE growth. The multilayer structures were processed into devices and LEDs with different sizes and geometric shapes were produced. Electroluminescence (EL) was observed under either forward or reverse bias conditions. Visible and infrared spectra displayed narrow emission lines representative of the Er3+ system. The temperature dependence of the spectra, which were measured from 100K to 300K, showed a stability in the visible emission intensity but a sharp decrease in the infrared intensity at room temperature. Based on light output vs current measurements, estimates of the excitation cross-section were obtained for visible EL emission.



Hide All
1. Rare Earth Doped Materials for Photonics, Proceedings of E-MRS Symposium Spring 2003, (Ruterana, P., Editor), Mater. Sci. Eng. B105, Elsevier (2003).
2. Rare Earth Doped Semiconductors III, Proceedings of E-MRS Symposium Spring 2000, (Zavada, J.M., Gregorkiewicz, T., and Steckl, A.J., Editors), Mater. Sci. Eng. B81, Elsevier (2001).
3. Favennec, P.N., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Jpn.J. Appl. Phys. 29, L524 (1990).
4. Steckl, A. J., Zavada, J. M., Materials Research Society Bulletin 24 No. 9, 33 (1999).
5. Coffa, S., Franzo, G., and Priolo, F., Materials Research Society Bulletin 23 No. 4, 25 (1998).
6. Thaik, M., Hömmerich, U., Schwartz, R.N., Wilson, R.G., and Zavada, J.M., Appl. Phys. Lett. 71, 2641 (1997).
7. Choyke, W.J., Devaty, R.P., Clemen, L.I., Yoganathan, M., Pensl, G., and Hassler, Ch., Appl. Phys. 65, 1668 (1994).
8. Steckl, A.J. and Birkhahn, R., Appl. Phys. Lett., 73, 1702 (1998).
9. Steckl, A.J., Heikenfeld, J., Garter, M., Birkhahn, R., and Lee, D. S., Compound Semiconductors 48, 6 (2000).
10. Ng, H. M., State-of-the-Art Program on Compound Semiconductors XXXVI and Wide Bandgap Semiconductors for Photonic and Electronic Devices and Sensors II, ECS Proceedings (2002).
11. Wojdak, M., Braud, A., Doualan, J. L., Moncorgé, R., Wojtowicz, T., Ruterana, P., Marie, P., Colder, A., Eimer, S., Méchin, L., and Ng, H. M., phys. stat. sol. (c) 2 No.3 1035 (2005).
12. Zavada, J. M., Jin, S. X., Nepal, N., Lin, J. Y., and Jiang, H. X., Chow, P. and Hertog, B., Appl. Phys. Lett. 84, 1061 (2004).
13. Nam, K. B., Li, J., Nakarmi, M. L., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 81, 1038 (2002).
14. Jin, S. X., Li, J., Shakya, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 78, 3532 (2001).
15. Hömmerich, U., Seo, J. T., MacKenzie, J. D., Abernathy, C. R., Birkhahn, R., Steckl, A. J., and Zavada, J. M., MRS Internet J. Nitride Semicond. Res. 5S1, W11.65 (2000).
16. Franzo, G., Coffa, S., Priolo, F., and Spinella, C., J. Appl. Phys. 81, 2784 (1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed