Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:22:01.232Z Has data issue: false hasContentIssue false

Viscous Flow of Glass-forming Liquids: A Cluster Approach

Published online by Cambridge University Press:  01 February 2011

G. J. Fan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
E. J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
H. J. Fecht
Affiliation:
University of Ulm, Center for Micro- and Nanomaterials, D-89081 Ulm, Germany also at Research Center Karlsruhe, Institute of Nanotechnology, D-76021 Karlsruhe, Germany
Get access

Abstract

An accurate description of the structure of a glass-forming liquid has eluded investigators, partly due to the dynamic behaviour that is inherent to liquids. The free volume concept provides a useful descriptor of a structural parameter that can be applied to glass-forming liquids. In previous work, we developed a cluster model to account for the viscous flow of glass-forming liquids (G. J. Fan and H. J. Fecht, J. Chem. Phys. 116, 5002 (2002)). In this work, we found that the kinetic fragility of a glass-forming liquid is quantitatively connected with its entropy of fusion ΔSf, the value of its melting point Tm, and the structures of interfaces between clusters. We will demonstrate that the proposed cluster model is consistent with an energy landscape model of the glass transition. On the basis of this suggestion, glass-forming liquids, consisting of nanometer-sized clusters, may be responsible for the observed similarity in the mechanical properties between metallic glasses and nanostructured metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angell, C. A., J. Phys. Chem. Solids 49, 863 (1988).Google Scholar
2. Cohen, M. and Turnbull, D., J. Chem. Phys. 31, 1164 (1959).Google Scholar
3. Cohen, M. H. and Grest, G. S., Phys. Rev. B. 20, 1077 (1979).Google Scholar
4. Fan, G. J. and Fecht, H. J., J. Chem. Phys. 116, 5002 (2002).Google Scholar
5. Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z., and Tarjus, G. A., Physica A 219, 27 (1995).Google Scholar
6. Götze, W. and Sjögren, L., Rep. Prog. Phys. 55, 241 (1992).Google Scholar
7. Ediger, M. D., Annu. Rev. Phys. Chem. 51, 99 (2000).Google Scholar
8. Böhmer, R., Ngai, K. L., Angell, C. A., and Plazek, D. J., J. Chem. Phys. 99, 4201 (1993).Google Scholar
9. Stickel, F., Fischer, E. W., and Richert, R., J. Chem. Phys. 102, 6251 (1995).Google Scholar
10. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).Google Scholar
11. Debenedetti, P. G. and Stillinger, F. H., Nature 410, 259 (2001).Google Scholar
12. Fan, G. J. and Lavernia, E. J., Phys. Rev. B (submitted).Google Scholar
13. Johnson, W. L., MRS Bull. 24, 42 (1999).Google Scholar
14. Gleiter, H., Prog. Mater. Sci. 33, 2233 (1989).Google Scholar
15. Kim, H. S., Estrin, Y., and Bush, M. B., Acta Mater. 48, 493 (2000).Google Scholar
16. Masumura, R. A., Hazzledine, P. M., and Pande, C. S., Acta Mater. 46, 4527 (1998).Google Scholar
17. McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K., Nature 398, 684 (1999).Google Scholar
18. Coble, R. L., J. Appl. Phys. 34, 1679 (1963).Google Scholar
19. Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H., Acta Mater. 50, 61 (2002).Google Scholar